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Abstract

Computing the group of units in a field of algebraic numbers is one of the central tasks of
computational algebraic number theory. It is believed to be hard classically, which is of interest
for cryptography. In the quantum setting, efficient algorithms were previously known for fields
of constant degree. We give a quantum algorithm that is polynomial in the degree of the field
and the logarithm of its discriminant. This is achieved by combining three new results. The first
is a classical algorithm for computing a basis for certain ideal lattices with doubly exponentially
large generators. The second shows that a Gaussian-weighted superposition of lattice points, with
an appropriate encoding, can be used to provide a unique representation of a real-valued lattice.
The third is an extension of the hidden subgroup problem to continuous groups and a quantum
algorithm for solving the HSP over the group Rn.

The problems where quantum algorithms have exponential speedups over the best known classical
algorithm have mostly been of number theoretic origin. Shor found quantum algorithms for factoring
and discrete log [Sho97] and Hallgren found a quantum algorithm for solving Pell’s equation [Hal07].
These algorithms were further generalized to finding the unit group of a number field [Hal05, SV05],
solving the principal ideal problem, and computing the class group [Hal05]. These are three of
the main problems in computational algebraic number theory [Coh93]. The running time for these
problems is measured in terms of the discriminant and the degree of the number field. The degree
of a number field is its dimension as a vector space over Q, while the discriminant is related to the
volume of the fundamental domain of the ring of integers. The algorithms in [Hal05, SV05] are only
efficient for constant degree number fields. In this paper we address the arbitrary degree case and
give an algorithm that is efficient in both the discriminant and the degree.

In the context of cryptography, the problem of computing the unit group and solving the principal
ideal problem (PIP) are considered to be hard classically, even over degree two number fields. The
hardness of the PIP was used as a basis in the Buchmann-Williams key exchange problem in an
effort to find a system that is harder to break than factoring-based systems [SBW94]. Given our new
algorithm for the unit group, it is conceivable that it will be possible to solve the PIP and also compute
the class group in a way similar to the constant degree case, but this is an open question. Solving the
PIP could have implications for some of the cryptosystems that have been proposed recently.
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In the last few years, since the discovery of homomorphic encryption [Gen09] and the ensuing
efforts to make the systems more efficient and more secure, constructions using number fields have
been given. These systems use hardness assumptions about computational problems in arbitrary
degree number fields. In [GH11], a version of the principal ideal problem where a special generator
is the secret was used as the hardness assumption. The Ring-LWE problem which forms the basis in
[LPR10, BV11] assumes that finding short vectors in ideal lattices of arbitrary degree number fields
is hard. It is open whether or not these relatively new assumptions about problems in number fields
of arbitrary degree are hard for quantum computers, but it is conceivable that the extra algebraic
structure of the fields will make it possible to efficiently solve these problems. Bernstein [Ber14]
outlines the beginning of an approach, where the first step would be to use heuristics to (classically)
compute the unit group in subexponential time. Our new algorithm given in this paper is the first
quantum algorithm for problems of this type in number fields of arbitrary degree. It may move
us closer to understanding whether the new homomorphic cryptosystems really are secure against
quantum computers.

The problem. A number field K can be defined as a subfield of the complex numbers C which
is generated over the rational numbers Q by an algebraic number, i.e. K = Q(θ), where θ is the root
of a polynomial with rational coefficients. If K is a number field, then the subset of K consisting of
all elements that are roots of monic polynomials with integer coefficients, forms a ring O, called the
ring of integers of K. The ring O ⊆ K can be thought of as a generalization of Z ⊂ Q. In particular,
we can ask whether O is a principal ideal domain, whether elements of O have unique factorization,
and what the set of invertible elements is. The unit group O∗ is the set of invertible algebraic integers
inside K, that is, elements α ∈ O such that α−1 ∈ O.

An elementary version of the problem is Pell’s equation: given a positive non-square integer d,
find x and y such that x2 − dy2 = 1. Solutions to this equation are parametrized by the formula
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(or a subgroup of index 2 if there is a unit that has norm −1). The fundamental solution
(x1, y1) is difficult to find, or even to write down because it may be exponential in d (i.e., doubly-
exponential). Moreover, the computation of the real number R = ln
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)

with a polynomial
number of precision digits is believed to be a hard problem classically.

A polynomial time quantum algorithm for the computation of R was given in [Hal07]. The
approach is to reduce the problem to a hidden subgroup problem (HSP) over the real numbers R, and
then to give a quantum algorithm for that hidden subgroup problem. In this context, the HSP amounts
to having a periodic function on R which is 1-1 within the period. The goal is to approximate the
period. In [Hal07] these issues were addressed by using an intricate notion of “reduced ideals”. This
method was extended to constant degree number fields [Hal05, SV05], but it is difficult to generalize
this method to rings of higher degree. At a minimum, computing the necessary reduced ideals seems
to require solving the shortest vector problem in ideal lattices of dimension n, and enumerating lattice
points also seems necessary. These problems are believed to be computationally difficult. Another
problem is running the standard hidden subgroup algorithm for the continuous group G = Rm, where
rounding causes errors. Such errors are tolerable when m is fixed, but worsen in higher dimensions.

The reduction. We propose a different scheme, leading to a quantum reduction from computing
the unit group of a number field of arbitrary degree n to solving an Abelian hidden subgroup problem
over Rm, where m = O(n). It involves several important ingredients. First, we represent a lattice by
a reduced basis (up to some precision). The HSP function works by performing a doubly-exponential
scaling function on a base lattice, which is the ring of integers O embedded into Rm. The output is
a new lattice L. This transformation is performed using repeated squaring of lattices and computing
LLL-reduced bases after each multiplication to keep the basis size from growing too large. These
lattices have the extra property that they can be multiplied because they are also ideals. Having
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obtained some basis of the lattice L, we construct a canonical quantum representation of L, namely
the Gaussian-weighted superposition of lattice points with a sufficiently large dispersion. To ensure
stability against rounding errors, each lattice point is represented by a superposition of nearby points
in a fine grid. (For example, in one dimension, such a superposition straddles two adjacent grid points.)
In addition to showing how to classically compute approximate bases for the stretched lattices, we
prove that the inner product of Gaussian lattice states has a hidden subgroup property.

Theorem 1. There is a reduction from computing the unit group of a number field to a continuous
hidden subgroup problem over Rm running in time polynomial in the degree m and log discriminant.

The HSP Algorithm. One byproduct of this work is a generalization of the HSP to uncountable
topological groups such as R. Most exponential speedups by quantum algorithms either use or try to
use the HSP [FIM+03, HMR+10]. In the HSP a function f : G → S is given on a group G to some
set S. For an unknown subgroup H ⊆ G, the function is constant on cosets of H and distinct on
different cosets. The goal is to find a set of generators for H in time polynomial in the appropriate
input size, e.g. log |G|. When G is finite Abelian or Zm there is an efficient quantum algorithm to
solve the problem.

Using the usual definition of the HSP for the group G = R does not work as can be seen by the
following illustration. When the group is discrete the function can be evaluated on any group element.
For example, it is possible to verify that a given element h is in H, by testing if g(0) = g(h). Over
the reals, if the period is some transcendental number x, then no algorithm could ever even query
g(x), and then see that it matches g(0). It is possible to address this by giving an ad-hoc technical
definition if we replace R by a discrete set with rounding, as in the case of constant degree number
fields [Hal07, Hal05, SV05]. However, it is not known how to solve the HSP with such a definition.
Here we give a cleaner definition using continuous functions:

Definition (The continuous HSP over Rm). The unknown subgroup L ⊆ Rm is a full-rank lattice
satisfying some promise: the norm of the shortest vector is at least λ and the unit cell volume is at
most d. The oracle has parameters (a, r, ε). Let f : Rm → S be a function, where S is the set of unit
vectors in some Hilbert space. We assume that f hides L in the following way.

1. f is periodic on L: for all v ∈ L, x ∈ Rm, f(x) = f(x+ v);

2.
∥∥|f(x)〉 − |f(y)〉

∥∥ 6 a · dist(x, y) for all x, y ∈ Rm (Lipschitz);

3. If minv∈L ‖x− y − v‖ > r, then
∣∣〈f(x)|f(y)〉

∣∣ 6 ε.

Given an efficiently computable function with this property, compute a basis for L.

This definition has several new features. One is that in order to have a continuous function, the
range of the HSP function consists of quantum states instead of just classical strings. Property (3)
mimics the condition that the function is distinct on different cosets in an approximate way. The
Lipschitz condition solves the issue with transcendental numbers described above because f(x) and
f(x+ ε) return nearly identical quantum states.

One new feature of the algorithm is that the rounding is done at the very end. Previously the
function was rounded in an ad-hoc way which prevented an analysis of how the errors would behave
under high-dimensional Fourier transforms. Now the analysis is done in a continuous space (think of
continuous quantum states) using generalized functions. With this approach there is a well defined
Fourier transform, the Lipschitz property allows the Fourier maximum coefficients to be bounded,
and then we can round at the very end for the algorithm.

Theorem 2. There is an efficient quantum algorithm solving the continuous HSP over Rm.

We also give a quantum reduction from all previous abelian HSP instances to this continuous case.
Our algorithm therefore subsumes all previously known abelian HSP cases.
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