Improved Quantum Algorithm for Triangle Finding via
Combinatorial Arguments

Francois Le Gall
The University of Tokyo

Technical version available at arXiv:1407.0085 [quant-ph].

Background. Triangle finding is a graph-theoretic problem whose complexity is deeply connected to
the complexity of several other computational tasks in theoretical computer science, such as solving
path or matrix problems [3,[8, 9L [13} |18} [17, [19]. In its standard version (sometimes called unweighted
triangle finding), it asks to find, given an undirected and unweighted graph G = (V, E), three vertices
v1,v2,v3 € V such that {vy, va}, {v1,v3} and {ve, v3} are edges of the graph.

Problems like triangle finding can be studied in the query complexity setting. In the usual model
used to describe the query complexity of such problems, the set of edges E of the graph is unknown but
can be accessed through an oracle: given two vertices v and v in V/, one query to the oracle outputs one
if {u,v} € F and zero if {u,v} ¢ E. In the quantum query complexity setting, one further assume
that the oracle can be queried in superposition. Besides its intrinsic interest, the triangle finding problem
has been one of the main problems that stimulated the development of new techniques in quantum query
complexity, and the history of improvement of upper bounds on the query complexity of triangle finding
parallels the development of general techniques in the quantum complexity setting, as we explain below.

Grover search immediately gives, when applied to triangle finding as a search over the space of
triples of vertices of the graph, a quantum algorithm with query complexity O(n3/ 2). Using amplitude
amplification, Buhrman et al. [7]] showed how to construct a quantum algorithm for triangle finding with
query complexity O(n + /nm) for a graph with m edges, giving an improvement for sparse graphs.
Combining amplitude amplification with clever combinatorial arguments, Szegedy [16] (see also [12]])
constructed a quantum algorithm for triangle finding with query complexity O(n!%/7) = O(n1'428"')

The quantum technique that led to the next improvement was the concept of quantum walk search
developed by Ambainis [1], which has turned out to be one of the most useful tools for the design
of quantum algorithms for search problems. Magniez, Santha and Szegedy [12]], using quantum walk
search, constructed a quantum algorithm for triangle finding with improved query complexity O(n13/ 10y,

Besides Grover search and quantum walks, a third technique to design quantum query algorithms
appeared recently when Reichardt [[14] proved that the quantum query complexity of a problem can be
found by solving a semi-definite positive program. While this optimization problem in general exponen-
tially many constraints, Belovs [5] then developed a technique known as the learning graph approach
to restrict the search space to candidates that automatically satisfy the constraints, thus giving an intu-
itive and efficient way to obtain a (not necessarily optimal) solution of the original optimization problem.
Belovs [5]] illustrated the power of this new technique by using it to improve the quantum query complex-
ity of triangle finding to O(n%%/27) = O(n!?%). Lee, Magniez and Santha [[1T]] then showed, again
using learning graphs, how to further improve this query complexity to O(n%7) = O(n'2%%), which
was the best upper bound on the quantum complexity of triangle finding known before the present work.
These two results based on learning graphs actually used a simple notion of learning graphs (referred
to as “non-adaptive” learning graphs in [6]) where the queries done by the algorithm do not depend on
the values of prior queries, which implies that the same upper bound O(ng/ ") holds for edge-weighted

'The O(-) notation removes poly (log n) factors.

http://arxiv.org/abs/1407.0085

versions of the triangle finding problenﬁ as well. Jeffery, Kothari and Magniez [10] showed how this
complexity can also be achieved, up to polylogarithmic factors, using quantum walks by introducing the
concept of nested quantum walks.

The best known lower bound on the quantum query complexity of triangle finding is the trivial 2(n).
Belovs and Rosmanis [[6] recently showed that any quantum algorithm (i.e., not necessarily based on
learning graphs) solving the edge-weighted triangle finding problem requires (n?/7 /,/logn) queries.
Since a non-adaptive learning graph does not treat differently the unweighted triangle finding problem
and its weighted versions, as mentioned above, this lower bound for the weighted case implies that
any quantum algorithm for unweighted triangle finding constructed using a non-adaptive learning graph
requires Q(ng/ 7/\/log n) queries as well, which matches, up to logarithmic factors, the best known upper
bound described in the previous paragraph. Practically, this means that, in order to improve by more than
a 1/4/log n factor the O(ng/ 7)-query upper bound on the quantum query complexity of triangle finding,
one need to take in consideration the difference between the unweighted triangle finding problem and
its edge-weighted version. Moreover, if the learning graph approach is used, then the learning graph
constructed must be adaptive. While a concept of adaptive learning graph has been developed by Belovs
and used to design a new quantum algorithm for the k-distinctness problem [4], so far no application of
this approach to the triangle finding problem has been discovered.

Statement of our result. In this work we show that it is possible to overcome the Q(n°/7/\/logn)
barrier, and obtain the following result.

Theorem 1. There exists a quantum algorithm that, given as input the oracle of an unweighted graph G
on n vertices, outputs a triangle of G with probability at least 2/3 if a triangle exists, and uses O(n5/ 4
queries to the oracle.

This result shows, for the first time, that in the quantum setting the standard (i.e., unweighted) trian-
gle finding problem is easier than its edge-weighted versions, and thus sheds light on the fundamental
difference between these two problems. Indeed, while in the classical time complexity setting evidences
exist suggesting that the unweighted version is easier (see, e.g., [13,[18]]), Theorem|[I] combined with the
lower bound by Belovs and Rosmanis [6], enables us to give a separation between the quantum query
complexities of these two problems.

Naturally, our result exploits the difference between the triangle finding problem and its weighted
versions. Our approach does not rely on learning graphs or nested quantum walks, the techniques that
were used to obtain the previous best known upper bound. Instead, it relies on combinatorial ideas that
exploit the fact that the graph is unweighted, as needed in any attempt to break the Q(ng/ 7/\/logn)
barrier, combined with Grover search, quantum search with variable costs [2], and usual quantum walks
over Johnson graphs. Our quantum algorithm is highly adaptive, in that all later queries depend on the
results of the queries done in at a preliminary stage by the algorithm. This gives another example of
separation between the query complexity obtained by adaptive quantum query algorithms and the best
query complexity that can be achieved using non-adaptive learning graphs (which is Q(n%/7 /v/log 1) for
triangle finding, as mentioned above), and thus sheds light on limitations of the non-adaptive learning
graph approach for graph-theoretical problems such as triangle finding.

Overview of our quantum algorithm. Let G = (V| F) denote the undirected and unweighted graph
that is the input of the triangle finding problem, and write n = |V/|. For any set Y C V, we use the
notation £(Y) = {{u,v} | u,v € Y} to represent the set of unordered pairs of elements in Y. For any
vertex u € V, we denote Ng(u) = {v € V | {u,v} € E} the set of neighbors of w.

The algorithm first takes a set X C V consisting of ©(y/nlogn) vertices chosen uniformly at
random from V, and checks if there exists a triangle of G with a vertex in X. This can be checked, with

“Weighted versions of the triangle finding problem ask to find three vertices in the graph such that the sum of the weights
of the corresponding three edges satisfy some condition (e.g., they sum to zero).

2

high probability, using Grover search in

0 (VIRTXEWVT]) = 0 (")

queries. Define S = | J,,cx £(Ng(u)). If no triangle has been reported, we know that any triangle of G
must have an edge in the set £(V')\ S. Note that the above preliminary step has already been used in prior
works, in particular related to the design of combinatorial algorithms for Boolean matrix multiplication
(e.g., [3.13]) and even in the design of the O(n!%/7)-query quantum algorithm for triangle finding in
[12,[16]. We now explain how to check whether £(V') \ S contains an edge of a triangle or not, which is
the novel contribution of our work.

For any set Y C V and any w € V, let us define the set Ag(X,Y,w) C E(Y) as follows:

Ag(X,Y,w) = E(Y N Ng(w)) \ S.

It is easy to see that, with high probability on the choice of X, this set will be “sparse”. We will not give
the precise definition of sparsity here, but instead describe our algorithm in the following ideal (but still
typical) situation: there exists a positive constant ¢ such that
oY]?
Aq(X,Y, <
’ G’(y L w)‘ = \/ﬁ
Remember that we now want to check if £(17) \ S contains an edge of a triangle. Our key observation
is the following. Given a vertex w € V and a set B C V of size [\/n] such that Aq(X, B, w) is known,
we can check if there exists a pair {v1,v2} € £(B) \ S such that {v;, vs, w} is a triangle of G with

0(yAG(X,B,w)y) —0 (C’BP) — O(n/%)

foralY CVandw € V. (D)

NZD

queries using Grover search and Condition (1)), since such {v;, vo} exists if and only if Ag(X, B,w) N
E = (). The remarkable point here is that, if there were no sparsity condition on Ag (X, B, w) then this
search would require ©(+/]B[2) = ©(y/n) queries. This improvement from \/n to n'/* is one of the
main reasons why we obtain an algorithm for triangle finding with query complexity O(n5/ 4) instead of
O(n?/?) using straightforward quantum search.

The main difficulty when trying to exploit the above observation is that we not only want now to find
a vertex w and a set B for which there exists {v1,v2} € E(B) \ S such that {v1,ve, w} is a triangle,
we also need to construct the set Ag(X, B, w), which requires additional queries. To deal with this
problem, we use a quantum walk over a Johnson graph, which enables us to implement the construction
of Ag(X, B, w) concurrently to the search of B and w. By carefully analyzing the resulting quantum
walk algorithm, we can show that the improvement by a factor n'/# described in the previous paragraph
is still preserved as long as we have enough prior information about the set .S when executing the walk.

The difficulty now is that loading enough information about .S during the execution of the quan-
tum walk is too costly. Moreover, constructing S before executing the quantum walk requires @(n?’/ 2)
queries, which is too costly as well. To solve this difficulty, we first search, using another quantum walk
on another Johnson graph, a set A C V of size [n%/4] such that (e Ac(X, A, w)) N E # , and
concurrently construct the set £(A) \ S. We then do exactly as in the previous paragraph, but taking B
as a subset of A instead of as a subset of V. Since Ag(X, B, w) can be created efficiently from the
knowledge of £(A) \ S, and £(A) \ S is available in the memory of the new quantum walk, the problem
mentioned in the previous paragraph is solved. By carefully designing the new quantum walk, we can
show that its query complexity is sufficiently small.

To summarize, we obtain a (four-level) recursive procedure involving quantum walks that checks
if £(V) \ S contains an edge of a triangle, and thus checks if G contains a triangle. Several technical
difficulties arise when analyzing the performance of this recursive quantum algorithm and showing that
its query complexity is O(n5/ 4), especially when Condition (1)) does not hold. They are dealt with by
using additional quantum techniques, such as quantum search with variable costs [2]], estimating the size
of the involved sets by random sampling, and proving several concentration bounds.

References

[1] AMBAINIS, A. Quantum walk algorithm for element distinctness. SIAM Journal on Computing

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

37,1 (2007), 210-2309.

AMBAINIS, A. Quantum search with variable times. Theory of Computing Systems 47, 3 (2010),
786-807.

BANSAL, N., AND WILLIAMS, R. Regularity lemmas and combinatorial algorithms. Theory of
Computing 8, 1 (2012), 69-94.

BELOVS, A. Learning-graph-based quantum algorithm for k-distinctness. In Proceedings of the
53rd Symposium on Foundations of Computer Science (2012), pp. 207-216.

BELOVS, A. Span programs for functions with constant-sized 1-certificates: extended abstract. In
Proceedings of the 44th Symposium on Theory of Computing (2012), pp. 77-84.

BELOVS, A., AND ROSMANIS, A. On the power of non-adaptive learning graphs. In Proceedings
of the 28th Conference on Computational Complexity (2013), pp. 44-55.

BUHRMAN, H., DURR, C., HEILIGMAN, M., HOYER, P., MAGNIEZ, F., SANTHA, M., AND

DE WOLF, R. Quantum algorithms for element distinctness. SIAM Journal on Computing 34, 6
(2005), 1324-1330.

CzUMAIJ, A., AND LINGAS, A. Finding a heaviest vertex-weighted triangle is not harder than
matrix multiplication. SIAM Journal on Computing 39, 2 (2009), 431444,

ITA1, A., AND RODEH, M. Finding a minimum circuit in a graph. SIAM Journal on Computing 7,
4 (1978), 413-423.

JEFFERY, S., KOTHARI, R., AND MAGNIEZ, F. Nested quantum walks with quantum data struc-
tures. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (2013),
pp. 1474-1485.

LEE, T., MAGNIEZ, F., AND SANTHA, M. Improved quantum query algorithms for triangle
finding and associativity testing. In Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (2013), pp. 1486-1502.

MAGNIEZ, F., SANTHA, M., AND SZEGEDY, M. Quantum algorithms for the triangle problem.
SIAM Journal on Computing 37,2 (2007), 413-424.

PATRASCU, M. Towards polynomial lower bounds for dynamic problems. In Proceedings of the
42nd Symposium on Theory of Computing (2010), pp. 603-610.

REICHARDT, B. Span programs and quantum query complexity: The general adversary bound is
nearly tight for every Boolean function. In Proceedings of the 50th Symposium on Foundations of
Computer Science (2009), pp. 544-551.

SCHNORR, C.-P., AND SUBRAMANIAN, C. R. Almost optimal (on the average) combinatorial
algorithms for Boolean matrix product witnesses, computing the diameter (extended abstract). In

Proceedings of the 2nd workshop on Randomization and Approximation Techniques in Computer
Science (1998), pp. 218-231.

SZEGEDY, M. On the quantum query complexity of detecting triangles in graphs. arXiv:quant-
ph/0310107, 2003.

[17] VASSILEVSKA WILLIAMS, V., AND WILLIAMS, R. Subcubic equivalences between path, matrix
and triangle problems. In Proceedings of the 51th Symposium on Foundations of Computer Science
(2010), pp. 645-654.

[18] VASSILEVSKA WILLIAMS, V., AND WILLIAMS, R. Finding, minimizing, and counting weighted
subgraphs. SIAM Journal on Computing 42, 3 (2013), 831-854.

[19] WILLIAMS, R. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the 46th
Symposium on Theory of Computing (2014), pp. 664—673.

