
No-Signalling Assisted Zero-Error Capacity of Quantum Channels
and an

Information Theoretic Interpretation of the Lovász Number

Full version at: arXiv:1409.3426

Runyao Duan1, 2, 3, ∗ and Andreas Winter4, 5, †

1Centre for Quantum Computation and Intelligent Systems (QCIS),
Faculty of Engineering and Information Technology,

University of Technology, Sydney, NSW 2007, Australia
2State Key Laboratory of Intelligent Technology and Systems,

Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

3UTS-AMSS Joint Research Laboratory for Quantum Computation and Quantum Information Processing,
Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China
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Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain
5School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

Abstract: We study the one-shot zero-error classical capacity of quantum channels assisted by
quantum no-signalling correlations, and the reverse problem of simulation. Both lead to simple
semi-definite programmings whose solutions can be given in terms of conditional min-entropies.
We show that the asymptotic simulation cost is precisely the conditional min-entropy of the Choi-
Jamiołkowski matrix of the given channel. For classical-quantum channels, the asymptotic capac-
ity is reduced to a quantum fractional packing number suggested by Harrow, which leads to the
first information-theoretic operational interpretation of the celebrated Lovász ϑ function as the
zero-error classical capacity of a graph assisted by quantum no-signalling correlations.
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When a communication channel N from Alice (A) to Bob (B) can be used to simulate an-
other channel M that is also from A to B? We can abstractly represent the simulation process as
the FIG.1. This problem has many variants according to the resources available to A and B. In
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FIG. 1. A general simulation network: a) The general simulation procedure for implementing a channel M
using another channel N just once, and the correlations between A and B; b) An equivalent way to redraw
a), representing all correlations between A an B, and their pre- and post- processing as Π, a quantum
no-signalling correlation.
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particular, the case when A and B can access unlimited amount of shared entanglement has been
completely solved. Let CE(N ) denote the entanglement-assisted classical capacity of N [1]. It was
shown that, in the asymptotic setting, to optimally simulate M, we need to apply CE(M)/CE(N )
times of N [2]. In other words, the entanglement-assisted classical capacity uniquely determines
the property of the channel in the simulation process.

We are interested in the zero-error case first studied by Shannon in 1956 [3]. It is well known
that determining the zero-error classical capacity is generally extremely difficult even for classi-
cal channels. Remarkably, by allowing a feedback link from the receiver to the sender, Shannon
proved that the zero-error classical capacity is given by an interesting quantity which was later
called the fractional packing number. This number only depends on the bipartite graph induced
by the classical channel under consideration, and has a simple linear programming character-
ization. Recently Cubitt et al introduced classical no-signalling correlations into the zero-error
simulation problems for classical channels, and proved that the well-known fractional packing
number gives precisely the zero-error classical capacity of the channel [4].

Another major motivation for this work is to further explore the connection between quantum
information theory and the so-called non-commutative graph theory suggested in [12]. Now it is
well known that any classical channel induces a bipartite graph as well as a confusability graph,
while a quantum channel induces a non-commutative bipartite graph and a non-commutative
graph. The new insight is that we can simply regard a non-commutative (bipartite) graph as
a high-level abstraction of all underling quantum channels, and study its information-theoretic
properties. This leads us to a very general viewpoint: graphs as communication channels. It
remains a great challenge to find feasible forms of various capacities for non-commutative (bipar-
tite) graphs.

A class of quantum no-signalling correlations has been introduced as a natural generaliza-
tion of classical non-signalling correlations [5–7]. Any such correlation is described by a two-
input and two-output quantum channel with no-signalling constraints between A and B (refer to
Π : L(Ai ⊗ Bi) → L(Ao ⊗ Bo) in FIG.1). We imitate the approach in [4] to study the zero-error
classical capacity of a general noisy quantum channels and the reverse problem of simulation,
both assisted by this more general class of quantum no-signalling correlations. We show below
that both problems can be completely solved in the one-shot scenarios, and the solutions are given
by semi-definite programmings (SDPs). Let N be a quantum channel with a Kraus operator sum

representation N (ρ) =
∑

k EkρE
†
k, where

∑
k E

†
kEk = 11. Let K = span{Ek} denote the Kraus op-

erator space of N , also referred as the non-commutative bipartite graph associated with N . The
Choi-Jamiołkowski matrix of N is given by JAB = (idA ⊗ N )ΦAA′ with ΦAA′ the unnormalized
maximally entangled state. Let PAB denote the projection on the support of JAB .

The one-shot zero-error classical capacity of N assisted by quantum no-signalling correlations
only depends on the Kraus operator space K , and is given by the integer part of following SDP

Υ(K) = maxTrSA s.t. 0 ≤ UAB ≤ SA ⊗ 11B ,TrA UAB = 11B ,TrPAB(SA ⊗ 11B − UAB) = 0.

Similarly, the exact simulation problem has a SDP formulation. The one-shot zero-error clas-
sical cost of simulating a quantum channel N with Choi-Jamiołkowski matrix JAB is given
by ⌈2−Hmin(A|B)J ⌉ messages per channel realization, where Hmin(A|B)J is the conditional min-
entropy defined as follows [8]:

2−Hmin(A|B)J = minTrTB , s.t., JAB ≤ 11A ⊗ TB .

Since the conditional min-entropy is additive, it follows immediately that the asymptotic sim-
ulation cost of a channel is given by −Hmin(A|B)J bits per channel realization. As a direct conse-
quence, the asymptotic zero-error classical simulation cost of the cq-channel 0 → ρ0 and 1 → ρ1,
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is given by log(1 +D(ρ0, ρ1)), where D(ρ0, ρ1) =
1
2‖ρ0 − ρ1‖1 is the trace distance between ρ0 and

ρ1. This provides a new operational interpretation of the trace distance between ρ0 and ρ1 as the
asymptotic exact simulation cost for the above cq-channel.

The exact simulation cost Σ(K) of the cheapest channel N such that K(N ) < K (supporting
on PAB), is given by the integer part of

Σ(K) = minTrTB s.t. 0 ≤ VAB ≤ 11A ⊗ TB ,TrB VAB = 11A,Tr(11 − P )ABVAB = 0.

Let us now introduce the asymptotic zero-error channel capacity and simulation cost of K as
follows,

C0,NS(K) = sup
n≥1

1

n
log Υ(K⊗n), G0,NS(K) = inf

n≥1

1

n
log Σ(K⊗n).

In general, one-shot solutions do not give the asymptotic results (for instance, a c-q channel with
two non-orthogonal pure states), and feasible formulas for the asymptotic capacity and simulation
cost remain unknown.

Interestingly, for the case K corresponding to a cq-channel N : i → ρi, both quantities can be
determined completely. Indeed, the asymptotic simulation cost is given by the one-shot simula-
tion cost, i.e., G0,NS(K) = log Σ(K), which immediately implies that G0,NS(K) is additive under
tensor product.

The zero-error classical capacity exhibits more complexity and is given by the solution of the
following simplified SDP

A(K) = max
∑

i

si, s.t. 0 ≤ si,
∑

i

siPi ≤ 11,

and Pi is the projection on the support of ρi. A(K) was introduced by A. Harrow as a natural
generalization of the Shannon’s classical fractional packing number [9], and can be named as
semidefinite (fractional) packing number associated with a set of projections {Pi}. Then we have
C0,NS(K) = logA(K). More precisely, we have

1

poly(n)
A(K)n ≤ Υ(K⊗n) ≤ A(K)n.

The above capacity formula naturally generalizes the result in [4], and has two interesting corol-
laries. First, it implies that the zero-error classical capacity of cq-channels assisted by quantum
no-signalling correlations is additive, i.e., C0,NS(K1 ⊗K2) = C0,NS(K1) + C0,NS(K2), for any two
Kraus operator spaces K1 and K2 corresponding to cq-channels.

Second, and more importantly, we show that for any undirected classical graph G = (V,E)
with vertices V = {1, ..., n} and edges E ⊂ V × V , the Lovász ϑ function [10], is an achievable
lower bound of the zero-error classical capacity assisted by quantum no-signalling correlations
of any quantum channel N that has G as its non-commutative graph in the sense of [12]. For
simplicity, we denote the non-commutative graph generated by the graph G as

G = span{|i〉〈j| : (i, j) ∈ E or i = j, i, j ∈ V }.

The zero-error classical capacity of a graph G assisted by quantum non-signalling correlations is
defined as

C0,NS(G) = min{C0,NS(K) : K†K = G}.

Then we have C0,NS(G) = log ϑ(G). Thus the Lovász ϑ function of a graph G can be operationally
interpreted as the zero-error classical capacity of the graph assisted by quantum no-signalling
correlations. To the best of our knowledge, this is the first complete information-theoretic inter-
pretation of the Lovász ϑ function since 1979. Previously it was shown that the Lovász ϑ function
is an upper bound for the zero-error entanglement-assisted classical capacity of a graph [11, 12].
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