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Suppose that two distant parties Alice and Bob share an entangled state ρAB, and they want

to exchange the subsystems of ρAB by local operations and classical communication (LOCC). In

general, this LOCC task (i.e. the LOCC transformation of ρAB → V ρABV with V being a swap

operator) is impossible deterministically, but becomes possible probabilistically. We study how

the optimal probability is related to the amount of entanglement in the framework of positive

partial transposed (PPT) operations, and show a remarkable class of states whose probability is

the smallest among every state in two quantum bits.

Suppose that two distant parties Alice and Bob share an entangled state ρAB, but they need the

other state such that the subsystems of ρAB are exchanged (i.e. V ρABV with V being a swap oper-

ator). Is it possible for them to swap a given ρAB by local operations and classical communication

(LOCC)? This problem, first considered by Horodecki et. al. [1], is quite interesting, because it is

closely related to the asymmetry of quantum entanglement. Indeed, if the entanglement contained

in ρAB is asymmetric and the amounts of the entanglement of ρAB and V ρABV are not equal

(in some entanglement measure), we can immediately conclude that ρAB cannot be swapped by

LOCC, because the amount of entanglement cannot be increased by LOCC [1]. In Ref [1], it has

also been shown that the entangled states which can be swapped by LOCC can be swapped by

a local unitary transformation. This implies that the entangled state ρAB whose reduced density

matrices ρA and ρB have different eigenvalues cannot be swapped by LOCC, and therefore almost

all entangled states cannnot be swapped by LOCC. However, this is the case where a determin-

istic LOCC transformation with a unit probability is considered. As shown later, such states can

also be generally swapped by stochastic LOCC (SLOCC), and therefore by examining the success

probability, it becomes possible to quantitatively discuss the degree of difficulty of swapping. For

example, it can be said that the state having the smallest swapping probability is the most difficult

state to swap, and hopefully the entanglement of the state is the most asymmetric.

We numerically calculate the swapping probability under positive partial transposed (PPT)

operations [2], which are known to contain LOCC. Concretely, we obtain the maximal p for given

ρAB among trace-nonincreasing PPT operations Λ such that Λ(ρAB) = pV ρABV . As a result, we
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show the special class of states whose swapping probability is the smallest among every state in

two quantum bits (qubits). The class of states is

ξ = x |ψ⟩ ⟨ψ|+ (1− x) |01⟩ ⟨01| , (1)

where |ψ⟩ = √
y |00⟩ +

√
1− y |11⟩, 0 ≤ x ≤ 1, and 0 ≤ y ≤ 1. The optimal (maximal) swapping

probability pξ of ξ by SLOCC is as follows:

(i) For x = 0, 1 or y = 0, 1, pξ = 1 because ξ is pure or not entangled.

(ii) For x ̸= 0, 1 and 0 < y ≤ 1
2 , pξ = y

1−y . The swap is realized by an SLOCC Λ as Λ(ρ) =

(A⊗B)ρ(A⊗B)† because Λ(ξ) = y
1−yV ξV, where

A = B = |1⟩ ⟨0|+
√

y

1− y
|0⟩ ⟨1| . (2)

(iii) For x ̸= 0, 1 and 1
2 ≤ y < 1, it is clear that pξ =

1−y
y from the symmetry.

From these, pξ changes discontinuously at x = 0, 1 and y = 0, 1. In this way, the state ξ can be

swapped with some finite probability even when it cannot be swapped by deterministic LOCC. It

is quite interesting that pξ is independent of x for 0 < x < 1.

Figure 1 shows the numerical results of relationship between the optimum swapping probability

p and the concurrence C. The results for 20,000 random density matrices are plotted in each case

of rank 2, 3, and 4. Our numerical results indicate that, in the limit x → 1, pξ is a lower bound

for the swapping probability of any state of same concurrence.
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FIG. 1. The relationship between the swapping
probability p and the concurrence C. Red,
black, and green dots represent the result
for rank 2, 3 and 4, respectively.
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FIG. 2. The relationship of swapping probability p
and ∆P .
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FIG. 3. The optimal swapping probability of ξAB with y=1/4 for various values of ϵ.

Figure 2 shows the relationship between the swapping probability p and the absolute value

of the difference of the purity of the reduced density matrices (∆P ). Only when ∆P = 0, the

optimum swapping probability reaches 1, which reproduces the result by Horodecki et. al. [1].

In conclusion, we showed that almost all states in two qubits can be swapped with nonzero

probability, and the lower bound of the optimal swapping probability increases for increasing the

entanglement. In particular, we showed that the lower bound approaches to zero in the limit of

vanishing entanglement. This is somewhat surprising because unentangled states can always be

swapped with a unit probability. Moreover, we showed that the lower bond corresponds to the

swapping probability of the state ξ in the limit of x → 1. Namely, this state is the most difficult

state to swap among the states which have the same amount of entanglement in two qubits.

Why is the state ξ extremely difficult to swap? The reason is not so clear but this state, the

mixture of the pure entangled states |ψ⟩ and |01⟩, has relatively high entanglement. In order to

swap this state, however, we are subject to the strong restriction that |01⟩ must be transformed to

|10⟩, even if the portion of |01⟩ is infinitesimally small. As a result, ξ has the special property that

the optimal swapping probability is fully discontinuous around x = y = 1, i. e. the probability

drops from 1 to 0 by the infinitesimal change of x.

Obviously, this discontinuity originates from the fact that we considered the exact transforma-

tion. If we consider the approximate transformation where the target state ρ′AB is allowed to have

a small margin ϵ such that D(ρ′AB, V ρABV ) ≤ ϵ (D is the trace distance), the discontinuity is

smeared out. Indeed, the optimal swapping probability of ξ is smeared out as shown in Figure 3.

We also studied how the swapping probability is related to the mixedness, and showed that the

lower bound (p = 0 for a purity larger than 1/2) is again explained by the state ξ (in the limit of

y → 0). Therefore, ξ is the most difficult state to swap in this sense also.

We hope that our results will shed some light on unknown properties of entanglement, in

particular concerning the asymmetry of quantum correlation.
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