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Abstract

We consider quantum-information division, which is characterized by a channel whose
outputs have no correlation and are not completely randomized. We show that the
quantum-information division is possible in a probabilistic manner by optimizing the
average fidelity in the channel with M outputs in both deterministic and probabilistic
cases. Moreover, we show that the optimal fidelities drastically change depending on the
condition imposed on the outputs (symmetric and asymmetric), which is quite contrast
to the case of imperfect cloning.

No-cloning theorem [2, 3], which states that an unknown quantum state cannot be per-
fectly copied, is a cornerstone of quantum physics. In spite of the no-go theorem, however,
it was shown by Bužek and Hillery [4] that imperfect cloning, where average fidelity between
the original unknown state (input) and the copied state (output) do not reach 1, is possible.
After their insight, the Bužek-Hillery imperfect quantum cloning machine was proved to be
optimal in the sense of average fidelity [5, 6, 7]. For the intensive review of quantum cloning,
see Ref. [8].

At first glance, imperfect cloning seems to divide unknown quantum information of the in-
put into the outputs. As we can see in the Bužek-Hillery imperfect quantum cloning machine
for instance, however, there remains correlation among the output states in general. Namely,
the output states are no longer independent to each other, and thus quantum information is
regarded to be distributed rather than divided among the outputs in imperfect cloning. In
oder to say that ”quantum information is divided,” it would be at least necessary that there
exists no correlation including not only quantum correlation such as entanglement but also
classical one among the outputs. Namely, the output state in the 1 → M cloning for each
input state |ψ⟩ should have the form of ρ1(ψ)⊗ ρ2(ψ)⊗ · · · ⊗ ρM (ψ), where ρi(ψ) is the i-th
output as a function of |ψ⟩. Now we have a question: Is imperfect cloning without correla-
tion among outputs possible, or is uncorrelated cloning possible? This is not a trivial issue.
For instance, let us consider the cloning strategy called the measurement-based procedure [8],
where an input state is measured in the {|0⟩, |1⟩} basis, and either |0⟩|0⟩ or |1⟩|1⟩ is prepared
depending on the measurement outcomes. This seems to achieve the desired uncorrelated
cloning, but for the input state of |ψ⟩ =

√
p|0⟩ +

√
1− p|1⟩, the procedure results in the

output state of p|00⟩⟨00|+ (1− p)|11⟩⟨11|. Clearly, the two outputs are classically correlated
unless p = 0, 1, and hence this procedure does not achieve the uncorrelated cloning.

Recently D’Ariano et al. studied this issue from the viewpoint of quantum-state decorre-
lation [9]. To be surprised the answer is negative, which means that no matter how small,
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multiple outputs cannot depend on the input state |ψ⟩ simultaneously if no correlation among
outputs is allowed; only one output can depend on |ψ⟩. However, the quantitative evaluation
by means of average fidelity is crucial to see whether unknown quantum information can be
divided or not. So we study this issue by optimizing average fidelity in the information divi-
sion into M outputs in d-dimensional systems in both deterministic and probabilistic cases.
In each case, the optimization is performed by imposing symmetric or asymmetric condition
on the output states [1].

In this poster we deal with the issue of dividing an unknown pure state in general. So
we consider a non-trace-preserving (trace-decreasing) channel, which takes any d-dimensional
pure state |ψ⟩ as an input, and outputs M states each with the same dimension d. Moreover,
when the output states always do not have any correlation, we call it an uncorrelated channel.
(Note that an uncorrelated channel excludes even classical correlation among outputs). Thus
a map of the uncorrelated channel from an input to the i-th output can be written as

|ψ⟩
Λsi−→ p

ψ
ρsi(ψ), (1)

where p
ψ
is probability to output a state ρ(ψ) and the suffix Si stands for the ith-output

system. In this channel, the output state ρsi(ψ) is realized with the probability p
ψ
for input

state |ψ⟩. So the average fidelity of a trace-decreasing channel Λsi is defined with the weight
of probability p

ψ
as

Fsi =

∫
p
ψ
⟨ψ|ρsi(ψ)|ψ⟩dψ∫

p
ψ
dψ

, (2)

where the integral is over the uniform measure dψ on pure input states. This definition is
the natural generalization of the average fidelity of a trace-preserving channel [10]. When
the average fidelity is 1/d, the input and output are independent each other. Conversely, if
average fidelity is not 1/d, the output has some sort of information of the input (i.e. not-
randomized) . Therefore, it can be defined such that quantum-information division is possible
if and only if Fsi ̸= 1/d for all outputs Si in an uncorrelated channel. With the fidelities Fsi ,
we consider the average of Fsi for all outputs Si (i = 1, 2 · · ·M)

F̄ =
1

M

M∑
i=1

Fsi , (3)

and optimize this F̄ under the uncorrelated condition.
The derived optimal fidelities are summarized in TABLE 1. We notice that the optimal

fidelities in the uncorrelated channels remarkably vary according to the conditions imposed
on the channels. This result seems to present the strikingly contrast to the imperfect cloning,
where the optimal fidelity does not change at all and is F̄ = 5/6 for every condition in
d = 2, for instance (since the value F̄ = 5/6 is known to coincide with the boundary of the
no-signaling condition [7], such invariance is expected).

The optimal deterministic and asymmetric uncorrelated channel can be realized by at-
taching randomized states to the intact input state, where the optimal average fidelity is
thus 1/M + (M − 1)/dM (this optimal channel is the same as the one called trivial ampli-
fication in Ref. [8]), and the optimal deterministic and symmetric channel can be realized
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Symmetric Asymmetric

Deterministic 1
d (FSk = FSi =

1
d)

1
M + M−1

dM (FSk = 1, FSi =
1
d)

Probabilistic 2
d+1(FSk = FSi =

2
d+1)

3M+d−1+D(d,M)
2M(d+1) (FSk =

(2−d)ξ+d+2
√

ξ(1−ξ)(d−1)

d+1 , FSi =
ξ+1
d+1)

Table 1: The optimal average fidelities in the d-dimensional 1 →M uncorrelated channels
(D(d,M) ≡

√
(M + d− 1)2 − 4(M − 1)(d− 1), ξ ≡ 1/[1 + (d − 1)/(dλm − d + 1)2],

λm ≡ (M + d− 1+D(d,M))/2d. Note: The index Si stands for all output systems except
for a certain system Sk.)

by randomizing all output states, where the optimal average fidelity is 1/d. In these cases
(i.e. in the deterministic ones), the fidelities at multiple outputs cannot exceed 1/d, that is,
quantum-information division is impossible. This impossibility is also expected from [9].

On the other hand, in the optimal probabilistic uncorrelated channels, all the average
fidelities at output can exceed 1/d (even in the symmetric channel). It is interesting that,
even in this case, the optimal asymmetric channel is realized by attaching randomized states
to an input-dependent state, and the optimal symmetric one is realized by randomizing all
output states. With this similarity to the deterministic case, however, in the probabilistic
channels whether the outputs exist or not can contain the input information, through which
the randomized states can indirectly depend on the input states. This is why all the average
fidelities at output can exceed 1/d. Therefore, we can conclude that quantum-information
division is possible probabilistically.
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