
Generalized Schmidt rank and entanglement
for composite systems of indistinguishable particles 1

Janusz Grabowski2

Polish Academy of Sciences, Institute of Mathematics

1. Introduction

The possibility of identifying subsystems states in a given total state of a composite quantum system
goes under the name of separability. In the case of pure states such a possibility is guaranteed if the
composite state takes the form of the tensor product of subsystems states.

On the other hand, with the advent of Quantum Field Theory, we have identified elementary particles
which are either bosons or fermions. As a matter of fact, according to the spin-statistics theorem all
particles are either bosons or fermions. The difference is that a state is unchanged by the interchange
of two identical bosons, whereas it changes the sign under the interchange of two identical fermions.
The characterization of fermionic states contains already the lack of the factorization of the total
state of the composite system. According to usual wisdom, this would always imply the presence of
an entanglement. In our opinion this state of affairs cannot be maintained, so there is a need of a
refinement of the notion of entanglement that describes better the situation when we are dealing with
bosons and fermions or even with ‘parabosons’ or ‘parafermions’ arising from potentially meaningful
parastatistics [1, 2].

In [3] we analyzed a concept of entanglement for a multipartite system with bosonic and fermionic
constituents in purely algebraic way using the the representation theory of the underlying symmetry
groups. Correlation properties of indistinguishable particles become relevant when subsystems are
no longer separated by macroscopic distances, like e.g. in quantum gates based on quantum dots,
where they are confined to the same spatial regions [5]. In our approach to bosons and fermions we
adopted the concept of entanglement put forward in [5, 6] for fermionic systems and extended in
[7, 8] in a natural way to bosonic ones.

Our approach appeared to be sufficiently general to define entanglement also for systems with an
arbitrary parastatistics in a consistent and unified way. For pure states we defined the S-rank,
generalizing the notion of the Schmidt rank for distinguishable particles and playing an analogous
role in the characterization of the degree of entanglement among particles with arbitrary exchange
symmetry (parastatistics).

In the algebraic geometry, a canonical embedding of the product CPn−1 × CPm−1 of complex
projective spaces into CPnm−1 is known under the name the Segre embedding (or the Segre map).
In the quantum mechanical context, the complex projective space CPn−1 represents pure states in
the Hilbert space Cn, and CPnm−1 represent pure states in Cn ⊗ Cm, so that the Segre embedding
gives us a geometrical description of separable pure states and, as shown in [9, 10], this description
can be extended also to mixed states.

In [4] we gave a geometric description of the entanglement for systems with arbitrary symmetry (with
respect to exchanging of subsystems) in terms of generalized Segre embeddings associated with par-
ticular parastatistics. This description is complementary to the one presented in [3] in terms of the
S-rank. For systems with arbitrary exchange symmetries, unlike for the systems of distinguishable
particles, the spaces of states are not, in general, projectivizations of the full tensor products of the
underlying Hilbert spaces of subsystems, but rather some parts of them. We show in the following
how to extend properly the concept of the Segre embedding to achieve a geometric description anal-
ogous to that for distinguishable particles. This approach uses a unifying mathematical framework
based on the representation theory and strongly suggesting certain concepts of the separability, thus
of the entanglement, in the case of indistinguishable particles.

1Based on a joint work with Marek Kuś and Giuseppe Marmo.
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2. Generalized Schmidt rank

Let H be a finite-dimensional Hilbert space with a Hermitian product 〈·|·〉. In the tensor power
H⊗k = H⊗ · · · ⊗ H︸ ︷︷ ︸

k−times

, we distinguish the subspaces: H∨k = H ∨ · · · ∨ H︸ ︷︷ ︸
k−times

of totally symmetric tensors

and H∧k = H ∧ · · · ∧ H︸ ︷︷ ︸
k−times

of totally antisymmetric ones.

There are many concepts of a rank of a tensor used in describing its complexity. One of the sim-
plest and most natural is the one based on the inner product operators defined in the previous
section. This rank, called in [3] the S-rank and used there to define the entanglement for systems of
indistinguishable particles, is a natural generalization of the Schmidt rank of 2-tensors.

Definition 1. Let u ∈ H⊗k. By the S-rank of u, we understand the maximum of dimensions of the
linear spaces ık−1H σ(u), for σ ∈ Sk, which are the images of the contraction maps

H⊗(k−1) 3 ν 7→ ıνσ(u) ∈ H. (1)

Non-zero tensors of minimal S-rank in H⊗k (resp., H∨k, H∧k) we will call simple (resp., simple
symmetric, simple antisymmetric).

Note that he above definition has its natural counterpart for distinguishable particles, so tensors
from H1 ⊗ · · · ⊗ Hk. We just do the contractions with tensors from H1 ⊗ · · · ⊗ Hk−1 and the
corresponding permutations. If particles are identical, Hi = H, and indistinguishable, e.g. the
tensors are symmetric or skew-symmetric, we can skip using permutations. In other words, for
u ∈ H∨k (resp., u ∈ H∧k), the S-rank of u equals the dimension of the linear space which is the
image of the contraction map,

H∨(k−1) 3 ν 7→ ıνu ∈ H, (2)

(resp.,
H∧(k−1) 3 ν 7→ ıνu ∈ H). (3)

Theorem 1. ([3])

(a) The minimal possible S-rank of a non-zero tensor u ∈ H⊗k equals 1. A tensor u ∈ H⊗k is of
S-rank 1 if and only if u is decomposable, i.e., it can be written in the form

u = f1 ⊗ · · · ⊗ fk, fi ∈ H, fi 6= 0. (4)

Such tensors span H⊗k.

(b) The minimal possible S-rank of a non-zero tensor v ∈ H∨k equals 1. A tensor v ∈ H∨k is of
S-rank 1 if and only if v can be written in the form

v = f ∨ · · · ∨ f, f ∈ H, f 6= 0. (5)

Such tensors span H∨k.

(c) The minimal possible S-rank of a non-zero tensor w ∈ H∧k equals k. A tensor w ∈ H∧k is of
S-rank k if and only if w can be written in the form

w = f1 ∧ · · · ∧ fk, (6)

where f1, . . . , fk ∈ H are linearly independent. Such tensors span H∧k.

In particular, the S-rank is 1 for simple and simple symmetric tensors and it is k for simple anti-
symmetric tensors from H∧k. Simple tensors have the form (4), simple symmetric tensors have the
form (5), and simple antisymmetric tensors have the form (6).



3. Entanglement

Using the concept of simple tensors we can define simple (non-entangled or separable) and entangled
pure states for multipartite systems of bosons and fermions.

Definition 2.

(a) A pure state ρx on H∨k (resp., on H∧k), ρx = |x〉〈x|
||x||2 , with x ∈ H∨k (resp., x ∈ H∧k), x 6= 0,

is called a bosonic (resp., fermionic) simple (or non-entangled) pure state if x is a simple
symmetric (resp., antisymmetric) tensor. If x is not simple symmetric (resp., antisymmetric),
we call ρx a bosonic (resp., fermionic) entangled state.

(b) A mixed state ρ on H∨k (resp., on H∧k) we call bosonic (resp., fermionic) simple (or non-
entangled) mixed state if it can be written as a convex combination of bosonic (resp., fermionic)
simple pure states. In the other case, ρ is called bosonic (resp., fermionic) entangled mixed
state.

According to Theorem 0.1, bosonic simple pure k-states are of the form

|e∨ · · · ∨ e〉〈e∨ · · · ∨ e|

for unit vectors e ∈ H, and fermionic simple pure k-states are of the form

k!|e1 ∧ · · · ∧ ek〉〈e1 ∧ · · · ∧ ek|

for orthonormal systems e1, . . . , ek in H.

Fixing a base in H results in defining coefficients [ui1...ik ] of u ∈ H⊗k. Formulae characterizing simple
tensors, thus simple pure states, can be written in terms of quadratic equations with respect to these
coefficients as follows. The corresponding characterization of entangled pure states are obtained by
negation of the latter.

Theorem 2. ([3])

(a) The pure state ρu, associated with a tensor u = [ui1...ik ] ∈ H⊗k, is entangled if and only if there
exist i1, . . . , ik, j1, . . . , jk, and s = 1, . . . , k such that

ui1...is...ikuj1...js...jk 6= ui1...js...ikuj1...is...jk . (7)

(b) The bosonic pure state ρv, associated with a symmetric tensor v = [vi1...ik ] ∈ H∨k, is bosonic
entangled if and only if there exist i1, . . . , ik, j1, . . . , jk, such that

vi1...ik−1ikvj1...jk−1jk 6= vi1...ik−1jkvj1...jk−1ik . (8)

(c) The fermionic pure state ρw, associated with an antisymmetric tensor w = [wi1...ik ] ∈ H∧k, is
fermionic entangled if and only if there exist i1, . . . , ik+1, j1, . . . , jk−1 such that

w[i1...ikwik+1]j1...jk−1 6= 0 , (9)

where the left-hand side is the antisymmetrization of wi1...ikwik+1j1...jk−1 with respect to the
indices i1, . . . , ik+1.

Note that the opposite to (9), w[i1...ikwik+1]j1...jk−1 = 0, are sometimes called the Plücker relations.
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