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The phenomenon of many-body localisation received a lot of attention recently in a variety of physical set-
tings. In condensed-matter physics such systems can be insulators even at non-zero temperature. In the context
of the foundations of quantum statistical mechanics, they provide examples that fail to thermalise under out-of-
equilibrium dynamics. We show how quantum information ideas can be used to connect dynamical properties –
the absence of a group velocity and transport – with the entanglement of individual eigenvectors. Specifically,
we prove that if a system is localising, in the sense of a zero velocity Lieb-Robinson bound, then eigenstates of
the model have exponentially clustering correlations. In one dimension, they fulfil an area law for entanglement
entropies and can be efficiently approximated by matrix-product states. In contrast to previous work, such as
the exponential clustering theorem, our results are not limited to the ground state of the model. Depending on
the precise notion of dynamical localisation adopted, they can be applied to many or even all of its eigenstates.
Our results significantly contribute to an ongoing debate in the condensed matter community about the different
aspects of many-body localisation and possible rigorous definitions.

Interacting many-body systems continue to pose some of the most challenging and intriguing problems in the field of
quantum information. Crucial to their understanding is the role of locality and its impact for the static and dynamic properties
of Hamiltonian systems. Building on the seminal work by Lieb and Robinson [1], there is a large body of literature trying
to capture the precise way in which a local decomposition of the Hamiltonian influences the dynamics. Often it can be
characterised by a finite group velocity associated with a light-cone like spreading of information and excitations [2, 3].

These dynamical insights also provide powerful mathematical proof tools and in turn can be employed to understand the
static properties of local systems. On the level of individual eigenstates, this lead to the exponential clustering theorem showing
that models with a finite group velocity and a spectral gap have exponentially decaying correlations in their ground state [4].
Similarly, in one dimension, it can be shown that such ground states can efficiently be written in terms of tensor networks
[5]. These results provide ideal examples of how tools from the quantum information community, such as entropies, tensor
networks and Lieb-Robinson bounds can be used to shed light on the exceedingly complex behaviour of strongly correlated
condensed matter systems. Despite the great importance of these results, there has been little progress since and accessing the
properties of eigenstates above the ground state seems to be a very difficult task. Aside from translational invariant systems,
where the first excited states can sometimes be characterised [6], the most promising systems to obtain stronger and more
general results are local models, where random potentials are added. This random noise is expected to strongly suppress the
propagation of information, thus leading to dynamical localisation. If this is the case, then exponential clustering correlations
in the ground state can indeed be shown under weaker assumptions on the spectral gap [7, 8].

While these systems are surely already interesting from a purely mathematical point of view, they are also paradigmatic
to the research on many-body localisation. This phenomenon received a lot of attention recently, as it allows systems to be
an insulator even at non-zero temperature and provides examples of systems showing the absence of thermalisation following
out-of-equilibrium dynamics [9, 10]. As such, its is of crucial importance for condensed-matter physics as well as in the
context of the foundations of quantum statistical mechanics.

The basis for the understanding of the absence of transport and of diffusion of waves in disordered media, was laid in the
seminal work by Anderson [11] which carefully and comprehensively discusses the single-particle case. Despite considerable
efforts, the extension of these results to interacting many-body systems is still a heatedly debated topic and even the very
definition of many-body localisation seems unclear to date. On the one hand probes involving real-time dynamics [12, 13]
have been discussed, showing excitations “getting stuck”, or seeing suitable signatures in density-auto-correlation functions
[14], leading to a dynamic reading of the phenomena. On the other hand, statistics of energy levels has been considered as an
indicator [15] as well as a lack of entanglement in the eigenbasis [10] and a resulting violation of the eigenstate thermalisation
hypothesis (ETH) [16–18].

In our work [19], we are able to make fundamentally new connections between the dynamic and static properties of Hamil-
tonian models. We not only present new ways how quantum information tools can be applied to understand the structure of
energy eigenstates, but with this also significantly help to clarify an emerging debate in the condensed matter community how
many-body localisation should be defined in rigorous terms. The starting point for our results is a comparison of different
notions of dynamical localisation and different ways to state zero-velocity Lieb-Robinson bounds. For this, we assume that we
have a lattice system withN sites and some distance measure d(., , ). We identify the following very strong form of dynamical
localisation that implies that information cannot be send through the system by controlling the local Hamiltonians.
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FIG. 1. Schematic presentation of our main result. We show that a zero-velocity Lieb-Robinson bound of a Hamiltonian implies that
eigenstates cluster exponentially and can, in one dimension, be efficiently written in terms of matrix-product states.

Definition 1 (Strong dynamical localisation). A Hamiltonian H exhibits strong dynamical localisation iff its time evolution
satisfies

‖A(t)− eitH
l
AAe−itH

l
A‖ ≤ cloce−µl , (1)

for a suitable µ > 0, where A is an arbitrary local observable, cloc > 0 a constant independent of the system size and H l
A

denotes a Hamiltonian which includes all interactions contained in a region of distance no more than l from the support of A.

This estimate relies on a very strong form of Lieb-Robinson bounds, namely one where the Hamiltonian itself rather than
the observable is truncated in space. Moreover this property has to hold as a norm estimate and thus necessarily holds for all
states. Therefore, we also provide a variant of our main theorem that relaxes this assumption considerably by making use of
the weaker commutator version of zero velocity Lieb-Robinson bounds and moreover by restricting this property to hold only
for expectation values with respect to individual eigenstates.

Definition 2 (Weak dynamical localisation). A Hamiltonian H exhibits weak dynamical localisation for one of its eigenstates
|k〉 iff its time evolution satisfies for all times t,

| 〈k| [A(t), B] |k〉 | ≤ min(t, 1)cmobe
−µd(A,B) , (2)

with constants cmob, µ > 0 independent of t and d(A,B) refers to the distance between the support of A and B.

In the context of many-body localisation, it is for example often assumed that the low-energy subspace shows an absence of
transport, while information might be able to spread once the state has support on eigenstates with an energy above a so-called
mobility edge [7, 8]. Such a setting is covered by the second part of our main theorem, where we only rely on Eq. (2) for the
particular eigenstate in question and we are thus able to make statements about the correlation structure for all states below
such a mobility edge.

The other type of assumptions we will need refer to the eigenvalues of the Hamiltonian and will be generic in the sense that
they will almost surely be fulfilled for random local models.

• Non-degenerate energies (AI): The energies of the full Hamiltonian are assumed to be non-degenerate. The smallest
gap between these energies will be called γ.

• Locally independent gaps (AII): The energies of reduced Hamiltonians HA and HB which include all interactions
inside rectangular regions A and B respectively, are assumed to be non-degenerate when viewing them as operators on
their respective truncated Hilbert spaces HA and HB . The smallest gap for all possible rectangular sets will be called
γ̃. Moreover, the gaps of these Hamiltonians need to be locally independent with respect to each other, in the sense that

Ea − Ea′ = Eb − Eb′ ⇒ a = a′, b = b′, (3)

where a, a′ and b, b′ label the eigenvalues of HA and HB respectively. The smallest difference of these gaps for all
rectangular regions A and B will be called η.

• Non-symmetric gaps (AIII): For all eigenvalues Ek of the full Hamiltonian the spectrum is no-where symmetric in the
sense that

min
r 6=s

∣∣|Er − Ek| − |Es − Ek|∣∣≥ ζ > 0 ∀k. (4)

In order to state our results, we need to define one more quantity, namely the number of states up to energy E,

Θ(E) :=
∑
l

El≤E

1. (5)



3

We now state our main theorem that shows that eigenstates of localising models have exponentially decaying correlations
[19]. In stark contrast to previous results, we are no longer limited to the ground state and depending on the precise notion of
localisation adapted, even all eigenstates can be accessible.

Theorem 1 (Clustering of correlations of eigenvectors). The dynamical properties of a local Hamiltonian imply clustering
correlations of its eigenvectors in the following way.

a If the Hamiltonian shows strong dynamical localisation and its spectrum fulfils assumptions AI and AII then all its
eigenvectors |k〉 have exponentially clustering correlations, i.e.

| 〈k|AB |k〉 − 〈k|A |k〉〈k|B |k〉 | ≤ 4cloce
−µd(A,B)/2. (6)

b If the Hamiltonian shows weak dynamical localisation for an eigenstate |k〉 and its spectrum fulfils assumptions AI and
AIII, then the eigenvector |k〉 has exponentially clustering correlations, in the sense that for all κ > 0

|〈k|AB |k〉 − 〈k|A |k〉〈k|B |k〉|

≤
(

12πΘ(Ek + κ)cmob + ln
πµd(A,B)e4+2π

κ2

)
e−µd(A,B)

2π
, (7)

where Θ(E) is the number of eigenstates up to energy E and κ can be chosen arbitrarily to optimize the bound.

The second, more elaborate part of the theorem allows to freely choose an energy cut-off κ that serves as an artificial energy
gap and can be used to optimize the bound. For typical local models, we expect the density of states to behave like a Gaussian,
an intuition that can be rigorously proved in a weak sense [20]. In this case the number of states will behave like a low-order
polynomial in the system size at energies close to the ground state energy Ek + κ. Thus fixing a κ > 0 independent of the
system size will lead to a prefactor that scales like a low-order polynomial in the system size where the order of the polynomial
will increase as one moves to higher energies. In the bulk of the spectrum, the number of states will grow exponentially with
the system size, thus rendering our bounds useless as one moves to high energies.

Based on recent insights about the connection between exponential decay of correlations and bounds for the smooth max-
entropies of truncated states [21], we proceed to provide a corollary [19] that in one dimension, eigenstates of localising
models can efficiently be written in terms of matrix-product states (see Fig. 1).

Corollary 2 (Area laws and matrix-product states). An eigenvector |k〉 of a localising Hamiltonian can be approximated as
an MPS with fidelity |〈k|MPS〉| ≥ 1− ε, where the bond dimension for a sufficiently large system size is given as follows.

a If the Hamiltonian shows strong dynamical localisation and its spectrum fulfils assumptions AI and AII, then the
approximation has a bond dimension

D = C (N/ε)
16

µ log2 e , (8)

for some constant C > 0.

b If the Hamiltonian shows weak dynamical localisation for an eigenvector |k〉 and its spectrum fulfils assumptions AI
and AIII, then the approximation has a bond dimension

D = poly (Θ(Ek + κ), N) , (9)

for any fixed κ which enters in the precise form of the polynomial.

It has been noted before that many-body localisation should be connected to eigenvectors fulfilling an area law (see Con-
jecture 1 in Ref. [10]), and eigenvectors being well approximated by matrix-product state vectors. This corollary rigorously
proves this connection. The two main results above establish a clear link between dynamic and static properties of localis-
ing models. We have shown that dynamical localisation implies that eigenvectors cluster exponentially and can thus in one
dimension be approximated by matrix-product states. These results are not only relevant as a general contribution to the un-
derstanding of the structure of eigenstates of local Hamiltonian models, but also relate to an ongoing debate about the nature of
many-body localisation. Our work is a first significant step in clearing up this debate and eventually arrive at a comprehensive
definition of the phenomenon. Moreover, we expect that our methods will be helpful in numerically describing such systems
and to obtain a better understanding when and how states of localising models can be efficiently parametrised on a classical
computer.
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