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Abstract

It has been known since long time that many NP-hard optimization problems can be
solved in polynomial time when restricted to structures of constant treewidth. In this work
we provide the first extension of such results to the quantum setting. We show that given
a quantum circuit C with n uninitialized inputs, poly(n) gates, and treewidth t, one can
compute in time (n

δ
)exp(O(t)) a classical witness y ∈ {0, 1}n that maximizes the acceptance

probability of C up to a δ additive factor. In particular our algorithm runs in polynomial
time if t is constant and 1/poly(n) ≤ δ < 1. For unrestricted values of t this problem
is known to be hard for the complexity class QCMA, a quantum generalization of NP. In
contrast, we show that the same problem is already NP-hard if t = O(log n) even when δ
is constant. Finally, we show that for t = O(log n) and constant δ, it is QMA-hard to find
a quantum witness |ϕ〉 that maximizes the acceptance probability of a quantum circuit of
treewidth t up to a δ additive factor.
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1 Introduction

The notions of tree decomposition and treewidth of a graph [12] play a central role in algorithmic
theory. On the one hand, many natural classes of graphs have small treewidth. For instance,
trees have treewidth at most 1, series-parallel graphs and outer-planar graphs have treewidth
at most 2, Halin graphs have treewidth at most 3, and k-outerplanar graphs for fixed k have
treewidth O(k). On the other hand, many problems that are hard for NP on general graphs,
and even problems that are hard for higher levels of the polynomial hierarchy, may be solved
in polynomial time when restricted to graphs of constant tree-width [4, 7, 3].

In this work, we identify for the first time a natural quantum optimization problem that
becomes feasible when restricted to graphs of constant treewidth. More precisely, we show how
to find in polynomial time a classical assignment that maximizes, up to an inverse polynomial
additive factor, the acceptance probability of a quantum circuit of constant treewidth. For
quantum circuits of unrestricted treewidth this problem is hard for QCMA, a quantum gener-
alization of MA [2]. Before stating our main result, we fix some notation. If C is a quantum
circuit acting on n d-dimensional qudits, and |ψ〉 is a quantum state in (Cd)⊗n, then we denote
by Pr(C, |ψ〉) the probability that the state of the output of C collapses to |1〉 when the input
of C is initialized with |ψ〉 and the output is measured in the standard basis {|0〉, |1〉, ..., |d−1〉}.
If y is a string in {0, ..., d− 1}n then we let |y〉 = ⊗n

i=1|yi〉 denote the basis state corresponding
to y. We let Pr cl(C) = maxy∈{0,...,d−1}n Pr(C, |y〉) denote the maximal acceptance probability
of C among all classical input strings in {0, ..., d − 1}n. The treewidth of a quantum circuit is
defined as the treewidth of its underlying undirected graph.
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Theorem 1 (Main Theorem). Let C be a quantum circuit with n uninitialized inputs, poly(n)
gates and treewidth t. For any δ with 1/poly(n) < δ < 1 one may find in time (n

δ
)exp(O(t)) a

classical string y ∈ {0, ..., d− 1}n such that |Pr(C, |y〉)− Pr cl(C)| ≤ δ.

The use of treewidth in quantum algorithmics was pioneered by Markov and Shi [11] who
showed that quantum circuits of logarithmic treewidth can be simulated in polynomial time with
exponentially high precision. Note that the simulation of quantum circuits [11, 8, 1, 14, 15, 9]
deals with the problem of computing the acceptance probability of a quantum circuit when
all inputs are already initialized, and thus may be regarded as a generalization of the classical
CIRCUIT-VALUE problem. On the other hand, Theorem 1 deals with the problem of finding
an initialization that maximizes the acceptance probability of a quantum circuit, and thus may
be regarded as a generalization of the classical CIRCUIT-SAT problem. Therefore, Theorem
1 is the first result showing that a quantum optimization problem can be solved in polynomial
time when restricted to structures of constant treewidth.

It is interesting to determine whether the time complexity of our algorithm can be sub-
stantially improved. To address this question, we first introduce the online-width of a cir-
cuit, a width measure for DAGs that is at least as large as the treewidth of their underlying
graphs. If G = (V,E) is a directed graph and V1, V2 ⊆ V are two subsets of vertices of V
with V1 ∩ V2 = ∅ then we let E(V1, V2) be the set of all edges with one endpoint in V1 and
another endpoint in V2. If ω = (v1, v2, ..., vn) is a total ordering of the vertices in V , then
we let cw(G,ω) = maxi |E({v1, ..., vi}, {vi+1, ..., vn})|. The cutwidth of G [13] is defined as
cw(G) = minω cw(G,ω) where the minimum is taken over all possible total orderings of the
vertices of G. If G is a DAG, then the online-width of G is defined as ow(G) = minω cw(G,ω)
where the minimum is taken only among the topological orderings of G. Below we compare
online-width with other width measures. We write pw(G) for the pathwidth of G and tw(G)
for the treewidth of G.

tw(G) ≤ pw(G) ≤ cw(G) ≤ ow(G) (1)

Theorem 2 below states that finding a classical witness that maximizes the acceptance
probability of quantum circuits of logarithmic online-width is already NP-hard even when δ is
constant. Since tw(C) ≤ ow(C) for any quantum circuit C, the same hardness result holds
with respect to quantum circuits of logarithmic treewidth.

Theorem 2. For any constant 0 < δ < 1, the following problem is NP-hard. Given a quantum
circuit C of online width O(log n) with n uninitialized inputs and poly(n) gates, determine
whether Prcl(C) = 1 or whether Prcl(C) ≤ δ.

An analog hardness result holds when the verifier is restricted to have logarithmic online-
width and the witness is allowed to be an arbitrary quantum state. It was shown by Kitaev
[10] that finding an δ-optimal quantum witness for a quantum circuit of unrestricted width is
hard for the complexity class QMA for any constant δ. Interestingly, Kitaev’s hardness result
is preserved when the quantum circuits are restricted to have logarithmic online-width. If C
is a quantum circuit with n inputs, then we let Prqu(C) = max|ϕ〉 Pr

qu(C) be the maximum
acceptance probability among all n-qudit quantum states |ψ〉.

Theorem 3. For any 0 < δ < 1 the following problem is QMA-Hard. Given a quantum circuit
C of online-width O(log n) with n uninitialized inputs and poly(n) gates, determine whether
Prqu(C) ≥ 1− δ or whether Prqu(C) ≤ δ.

We analyse the implications of theorems 2 and 3 to quantum generalizations of Merlin-
Arthur protocols. In this setting Arthur, a polynomial sized quantum circuit, must decide the
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membership of a string x to a given language L by analysing a quantum state |ψ〉 provided
by Merlin. In the case that x ∈ L, there is always a quantum state |ψ〉 that is accepted by
Arthur with probability at least 2/3. On the other hand if x /∈ L then no state is accepted by
Arthur with probability greater than 1/3. The class of all languages that can be decided via
some quantum Merlin-Arthur game is denoted by QMA. The importance of QMA stems from
the fact that this class has several natural complete problems [6, 10]. Additionally, the oracle
version of QMA contains problems, such as the group non-membership problem [16] which are
provably not in in the oracle version of MA and hence not in the oracle version of NP [5]. The
class QCMA is defined analogously, except for the fact that the witness provided by Merlin is
a product state encoding a classical string. Below we define width parameterized versions of
QMA.

Definition 1. A language L ⊆ {0, 1}∗ belongs to the class f(n)-Online-QMA (f(n)-treewidth-
QMA) if there exists a polynomial time constructible family of quantum circuits {Cx}x∈{0,1}∗
such that for every x ∈ {0, 1}∗, Cx has online-width (treewidth) at most f(|x|) and

• if x ∈ L then there exists a quantum state |ψ〉 such that Cx accepts |ψ〉 with probability at
least 2/3,

• if x /∈ L then for any quantum state |ψ〉, Cx accepts |ψ〉 with probability at most 1/3.

The class f(n)-Online-QCMA (f(n)-Treewidth-QCMA) is defined analogously, except that the
witness |y〉 is required to be a classical string y encoded into a basis state |y〉.

Corollary 1.i below follows from Theorem 1. Corollary 1.ii is a consequence of the hardness
result stated in Theorem 2 together with Markov and Shi’s result [11] stating that quantum
circuits of logarithmic treewidth can be simulated in polynomial time. Notice that by Equation
1, the results in [11] also imply that circuits of logarithmic online-width can be simulated in
polynomial time. Corollary 1.iii follows directly from Theorem 3. We notice that the classes
QMA and QCMA are respectively equal to poly(n)-Online-QMA and poly(n)-Online-QCMA.

Corollary 1.

i) O(1)-Treewidth-QCMA ⊆ P.

ii) O(logn)-Treewidth-QCMA = O(logn)-Online-QCMA = NP.

iii) O(logn)-Treewidth-QMA = O(logn)-Online-QMA = QMA,

Thus, assuming that QMA 6= NP , Corollary 1 implies that, whenever Arthur is restricted
to have logarithmic treewidth, quantum Merlin-Arthur protocols differ in power with respect
to whether the witness provided by Merlin is classical or quantum. We observe that obtaining
a similar separation between the power of classical and quantum witnesses when Arthur is
allowed to have polynomial treewidth is equivalent to determining whether QMA 6= QCMA.
This question remains widely open.
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