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I. INTRODUCTION

Sources of true randomness have numerous applications, be they in algorithms, sampling, gambling or cryptog-
raphy [1] where the last two demand sources that can be certified as being uncorrelated to any outside process or
variable, i.e. private randomness. Quantum physics offers this opportunity when a Bell inequality is violated [2].

The number of random bits which can be obtained is characterized by the min-entropy which can be bounded by
the violation of some Bell inequality or the observed statistics [3–6]. To obtain a truely private and random sequence
for use in the aforementioned applications, we must apply a randomness extractor to the outcomes of Bell tests, which
requires an independent random seed. Generally, the longer the initial string, the longer the needed seed and the
computational time to output the result; in fact, it is an active research direction to construct randomness extractor
with short seed length [1].

In a practical Bell experiment, because of the inefficiencies of the source and the detectors, the recorded data will
mostly be populated with the no detection events ∅. From physics, we know that these no-detection events carry
little or no randomness: for instance, they may be associated to the source not having emitted any pair in a given
time. However, in a device-independent certification, one cannot simply ignore those events, because this opens the
detection loophole. Here we provide a method to quantify the randomness present in a subset of events (for instance,
double detections) which takes into account the whole observed statistics (including the no-detection events) and thus
does not open the detection loophole. A priori, there are two natural scenario we can consider, depending on whether
we reveal to Eve the runs that have been kept or discarded. For simplicity, in this work we focus only on the scenario
where Eve is allowed to learn the runs we have kept, and we assume i.i.d.. For several physically-motivated models
of the observed statistics, we show that one can indeed vindicate the idea that most of the randomness is present
in the double-detection events. In other words, the current analysis allows us to extract more randomness from the
outcomes of Bell tests than a previous analysis [3], and also permit hashing the post-selected subset of the original
data thereby reducing the needed seed length, and also the time required to compute the final output.

II. THE GUESSING PROBABILITY FOR POST-SELECTED DATA

For concreteness we consider a bipartite Bell test where each party has two measurement settings, which has three
possible outcomes 0,1 and ∅. The set {0, 1,∅}2 of joint outcomes is partitioned into K, the set of outcomes that is
kept and D, the set of outcomes that is discarded. As mentioned, Eve is allowed to know whether we have kept or
discarded the event, even though this additional information may not be intentionally broadcasted to Eve[7].

Claim: If the raw data of a Bell test satisfy the original model p(ab|xy) =
∑
λ p(λ)p(ab|xyλ) then the randomness

extractable from the post-selected outcomes of each pair of settings xy is the min-entropy of the guessing probability

Gxy =
1

p(K|xy)

∑
λ

p(λ) max
ab∈K

p(ab|xyλ). (1)

The main idea of the proof is to describe the model of the post-selected data[8], namely p(ab|xyK), in terms of the
original model by correctly renormalizing p(λ) and p(ab|xyλ) given the (revealed) information of keep or discard.

The optimal guessing probability for Eve given an observed p(ab|xy) can be obtained by optimizing (1) over all
decompositions respecting p(ab|xy) which can be relaxed to an SDP and implemented efficiently using the techniques
in [3].

III. NUMERICAL TESTS

We computed lower bounds on the extractable randomness from the outcomes of the first setting (in terms of
asymptotic rate) for various situations. Every situation is a Bell-like experiment in which a source creates some



2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Source efficiency

R
a
n
d
o
m

n
e
s
s
 r

a
te

 

 

From the observed correlations (no outcomes discarded)

When preparation is heralded, pair of last outomes or all last outcomes are discarded

FIG. 1: Measurement of a singlet with 99% visibility, which is produced with finite probability.

bipartite state with efficiency ν which is detected by the parties with one of two possible measurements. The detectors
might have a finite efficiency η, allowing for the observation of a third outcome (absence of any detection). Concretely,
if p(ab|xy) for a, b, x, y ∈ {0, 1} is the ideal correlation (when η = ν = 1) obtained from some choice of state and
measurements, then

q(ab|xy) =

 νη2p(ab|xy) if ab ∈ {0, 1},
ν(1− η)2 + (1− ν) if ab = ∅∅,
2νη(1− η) otherwise

(2)

is the correlation when we have imperfect detectors and imperfect source. For a given choice of state, measurements,
η and ν, we compute the randomness that can be extracted:
• From the complete string of outcomes.
• From the complete string of outcomes upon heralding of a successful preparation of the state.
• From the string of outcomes in which the double occurence of ∅ are removed (i.e. ∅∅).
• From the string of outcomes in any occurence of a no-detection event ∅ is removed (i.e. 0∅, 1∅, ∅∅, ∅0, ∅1).

Removing some outcomes reduces the length of the considered data. To facilitate the comparison with cases where
no outcome is discarded, we choose to renormalize the randomness rate obtained on post-selected data with respect
to total number of runs.

A. Perfect detectors, imperfect source

In Figure 1, we show the result when a singlet with visibility 99% is produced, the detection efficiency is η = 1
and ν varies. In this case, the lower bound on the randomness computed from the full statistics is lower than what
can be certified after removing double no-detections from the data. Thus, performing this post-processing on the data
allows one to certify a larger amount of randomness than that which is apparent at first sight. In fact, after discarding
double no-detections, the same amount of randomness that could be certified if the source was heralded is recovered
by our analysis. Thus, the effect of no-detections seems to be cleanly identified and removed by our analysis[9].

B. Imperfect detectors, perfect source

In Figure 2, we consider the case where the source efficiency is ν = 1 and η varies, for either measurement on a
singlet with 99% visibility, or on partially entangled states (using then Eberhard’s choice of measurements). In this
case, no-detection events come solely from the imperfection of the detectors, and the source can be considered to be
already heralded. This time, the largest amount of randomness is certified when either all outcomes are taken into
account, or double no-detection events are discarded. In particular, it seems that the same amount of randomness can
be extracted from the full string of outcomes as from the (smaller set of) data in which ∅∅ is removed. This indicate
that in a heralded Bell test with finite detection efficiency, experimentalists can indeed discard double no-detection
events, provided that they keep a count of how many of them appear (they keep their statistics). Note also that in
this figure, no randomness can be extracted when the detection efficiency is lower than either 82.8% or 66.6%, as is
expected.
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FIG. 2: Measurement of the singlet with 99% visibility (left), or of partially entangled state following Eberhard (right).
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FIG. 3: Measurement of a singlet with 99% visibility and 95% detection efficiency η. Plot on the right is the same as on the
left, but rescaled with respect to the source efficiency ν. The first two curves are superposed.

C. Imperfect detectors, imperfect source

In Figure 3, we considere a case where no-detection events can come either from the source or from the detectors.
Namely, we set η = 95% and vary ν, for measurements on a singlet with visibility 99%. This time, the largest amount
of randomness is obtained only by discarding the double no-detection events. In fact, as much randomness as if the
source was heralded can again be certified here. Discarding all rounds where at least one party observed a no-detection
leads to a lower randmness rate. For all cases considered so far, discarding double no-detections always produces the
best result.

IV. CONCLUSION AND FUTURE WORK

In this work, we have studied the impact of post-selection on the randomness extractable from Bell tests. A natural
follow up is to extend our results beyond i.i.d. scenarios and to the situation where we do not reveal to Eve which
data is kept. Since post-selection is one possible processing one could do on the outcomes of Bell tests, our work also
raise the question: what kind of post-processing will reveal the optimal amount of randomness from Bell tests?

Remarks: This work is an ongoing collaboration with Stephano Pironio (Laboratoire d’Information Quantique,
Université Libre de Bruxelles). A working draft is available upon request.
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