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Recently, entanglement concentration was shown to be irreversible. However, it is still not
clear what kind of LOCC conversion is reversible. We derive the necessary and sufficient
condition for the reversibility of LOCC conversions between two bipartite pure entangled
states in the asymptotic setting. Moreover, conversion can be asymptotically achieved per-
fectly and reversibly with only local unitary operation under such condition. Astonishingly,
our result implies that an error-free reversible conversion is asymptotically possible even be-
tween states whose copies can never be locally unitarily equivalent with any finite numbers
of copies, although such a conversion is impossible in the finite setting.

Entangled states are used as resources for many quantum information processes. However, the
most preferable entangled state depends on the type of the information processes to be applied. For
example, measurement based quantum computation [1] and quantum channel estimation [2] require
entangled states that are not necessarily maximally entangled while maximally entangled states are
used as typical resource of entanglement. In such a situation, it is required to prepare the desired
entangled state with high accuracy. When the initial entangled state is different from the desired
form and we are not allowed to apply the global operation, we need to convert the given initial state
by local operations and classical communications (LOCC). This type of conversion is called LOCC
conversion. Bennett et. al. [3] studied the asymptotic conversion between the multiple-copy states
of two distinct pure entangled states, which are not necessarily maximally entangled. The optimal
conversion rates are given by the ratio between von Neumann entropies Hψ and Hϕ of the reduced
density matrices of the initial state ψ and the target state ϕ. Since the opposite conversion rate is
the inverse of the original conversion rate, this kind of conversion was seemed to be reversible, as
pointed out in [4][5][6][7][8]. However, two of the authors [9] explicitly revealed that this kind of
conversion is irreversible in the case of entanglement concentration, i.e., the case when the target
entangled state is maximally entangled, although Hayden and Winter [10] and Harrow and Lo
[11] implicitly suggested this fact. This problem was not discussed when the initial and target
states are not maximally entangled. Recently, two of the authors [12] investigated the second order
asymptotics and derived the second-order optimal LOCC conversion rate between general pure
states, which clarifies the relation between the accuracy and the asymptotically optimal conversion
rate up to the second order. However, the paper [12] did not consider the reviersibility. That is,
it is still unsolved what kind of LOCC conversions are asymptotically successful and reversible or
not, namely, entanglement preservability of LOCC conversion.

In this paper, we study entanglement preservability of LOCC conversions from copies of an
arbitrary pure entangled state ψ to copies of another arbitrary pure entangled state ϕ on bipartite
system HA ⊗HB. To investigate the preservability, we consider the minimum conversion-recovery
error (MCRE) defined as

δn(ψ, ϕ)

:= min
m∈N,C,D:LOCC

B(C(ψ⊗n), ϕ⊗m) +B(ψ⊗n, D ◦ C(ψ⊗n)), (1)

where B is the Bures distance defined as B(ψ, ϕ) =
√

1− F (ψ, ϕ), F denotes the fidelity, C and D
are conversion and recovery LOCC operations respectively. The limit limn→∞ δn(ψ, ϕ) represents
the asymptotic compatibility of the two operations because its convergence to zero means that both
operations can be perfectly accurately done. On the other hand, when it does not go to zero, we
have to consider a trade-off between the errors of the convertibility and the reversibility even in the
asymptotic setting. In the asymptotic analysis of LOCC conversion, it is shown that the quantity

Cψ,ϕ :=
Hψ
Vψ

(
Hϕ
Vϕ

)−1
, plays an important role where Vψ := Tr{(TrBψ)(− log(TrBψ) −Hψ)

2} [12].
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We show that

lim
n→∞

δn(ψ, ϕ) = 0, (2)

if and only if Cψϕ = 1 [13]. This condition is the criterion of asymptotic entanglement preservability
of LOCC conversions.
Conversion with Only Local Unitary Operation: Even if LOCC conversion is asymptotically re-
versible, it is not reversible for finite number of copies in general. If our operation is restricted
to local unitary (LU) operations, reversibility is perfectly guaranteed even for the non-asymptotic
setting. We define the error ϵn(ψ, ϕ) of LU conversion from ψ to ϕ as

ϵn(ψ, ϕ)

:=min

B((UA ⊗ UB)ψ
⊗n, ϕ⊗m)

∣∣∣∣∣∣∣∣
m ∈ N
UA : H⊗n

A → H′⊗m
A

UB : H⊗n
B → H′⊗m

B

UA, UB : unitary

 , (3)

This definition of the error represents the achievability of conversion with the optimal LU operation
and the optimal number of copies of the target state. The following gives the formula of the
asymmptotic minimum error.

lim
n→∞

ϵn(ψ, ϕ)
2 = 1−

√
2

Cψϕ
1
2 + Cψϕ

− 1
2

. (4)

Moreover, the optimal number of copies of ϕ is
Hψ
Hϕ
n+o(

√
n) [13]. When ϕ is a maximally entangled

state and ψ is not, Cψϕ = 0 and limn→∞ ϵn(ψ, ϕ) = 1 hold, which means this LU conversion is
totally impossible. If Cψϕ is close to 1, limn→∞ ϵn(ψ, ϕ) is close to 0, i.e., the copies of the target
state can be precisely approximated by making Cψϕ close to 1. Since LU conversion is a kind of
LOCC, δn(ψ, ϕ) ≤ ϵn(ψ, ϕ) holds by definition. Therefore, (4) implies that limn→∞ δn(ψ, ϕ) = 0 if
Cψϕ = 1, which is a sufficient condition for (2). Notice that possible LU operations are restricted
to changes of their respective Schmidt basis. Hence, the error is 0 only in a limited case, i.e., the
case when the Schmidt coefficient Pnψ of ψ is equal to Pmϕ of ϕ up to reordering with a certain m.
However, due to (4), in the limit that the number n goes to infinity, the error goes 0, i.e., these two
states are asymptotically inter-convertible by LU conversion under the weaker condition Cψϕ = 1.
In fact, such a non-trivial example exists.
Examples in Bipartite Two Qubit System: Now, we give examples in bipartite two qubit system
HA ⊗HB, where HA = HB = C2 ⊗ C2. Let {|0⟩ , |1⟩} be an orthonormal basis of C2. At first, in
order to see the asymptotic behavior of the error of the LU conversion given in (4), we define initial
and target pure states |ψ⟩ ∈ HA ⊗HB and |ϕ(x)⟩ ∈ HA ⊗HB for 0 ≤ x ≤ 1 as

|ψ⟩ :=
√
0.0048 |00⟩A ⊗ |00⟩B +

√
0.4752 |01⟩A ⊗ |01⟩B +

√
0.0052 |10⟩A ⊗ |10⟩B

+
√
0.5148 |11⟩A ⊗ |11⟩B , (5)

|ϕ(x)⟩ :=
√

(−ax+ 0.5)(−bx+ 0.5) |00⟩A ⊗ |00⟩B +
√

(−ax+ 0.5)(bx+ 0.5) |01⟩A ⊗ |01⟩B
+

√
(ax+ 0.5)(−bx+ 0.5) |10⟩A ⊗ |10⟩B +

√
(ax+ 0.5)(bx+ 0.5) |11⟩A ⊗ |11⟩B , (6)

where a := 0.225 and b := 0.1996180626854719. In FIG. 1, the solid line is the asymptotic
error lim ϵn(ψ, ϕ(x)) given in (4) as a function of x, where we see that lim ϵn(ψ, ϕ(x)) = 1 with
x = 0, and lim ϵn(ψ, ϕ(x)) ≈ 0 with x = 1 because ϕ(0) is a maximally entangled state, and
Cψ,ϕ(1) = 1 + 1.11× 10−15 ≈ 1. We can also see that the limit of the error can take various values
in proportion to target states. As for the error for the non-asymptotic setting, the dots in FIG. 1
are the result of numerical calculation of ϵ3000(ψ, ϕ(x)) for x = 0.1j (j = 0, 1, . . . , 10). Indeed, we
can see that the error for large n = 3000 is close to (4). In particular, ψ and ϕ(1) are obviously not
locally unitarily equivalent, and satisfy Cψ,ϕ(1) ≈ 1 as mentioned above. Hence, the pair ψ, ϕ(1) is
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FIG. 1: The solid line is the graph of [1 − sech
1
2 1
2 logCψ,ϕ(x)]

1/2, which equals to the asymptotic error
lim ϵn(ψ, ϕ(x)) of LU conversion according to (4). We see that lim ϵn(ψ, ϕ(x)) is 1 with x = 0, and is almost
equal to 0 with x = 1 because Cψ,ϕ(0) = 0 and Cψ,ϕ(1) ≈ 1. lim ϵn(ψ, ϕ(x)) takes various values in proportion
to x. The dots are the result of numerical calculation of ϵ3000(ψ, ϕ(x)) for x = 0.1j (j = 0, 1, . . . , 10). Indeed,
they are close to the asymptotic curve given as the solid line.

a non-trivial example of asymptotically precisely LU convertible pairs.
Conclusion.: We have addressed the asymptotic preservability of LOCC conversion between two
arbitrary bipartite pure entangled states. We have introduced the MCRE in terms of the Bures
distance in order to evaluate the errors of conversion and recovery operations simultaneously, and
derived the necessary and sufficient condition for their asymptotic compatibleness. Consequently,
we have found that LOCC conversion is asymptotically preservable if and only if Cψϕ = 1. More-
over, local unitary operation is enough to obtain the copies with the optimal rate of number of the
target state when a case of Cψϕ = 1, and the asymptotic error is small if Cψϕ is close enough to 1.
This result suggests a new criterion Hψ/Vψ of a kind of asymptotic equivalence relation between
pure states. It remains a future problem to exactly formulate the trade-off relation between the
conversion and the recoverability for general LOCC conversions because we have solved it only for
LU conversion. Moreover, it is important to analyze the LOCC conversion and its reversibility in
a finite-length setting for utility, though only asymptotic analysis is treated in this paper. In fact,
even if Cψϕ = 1, the minimum sum of both errors is not zero and should be less under general
LOCC conversion than that of under LU conversion with finite n. Since the limit has been shown
to be zero under both of them, we are interested in the convergence speed of the minimum sum.
It is also an open problem to clarify the asymptotic behavior.
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