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Introduction and Background

WignerD-functions are the matrix elements of the representations of finite group SU(n)

of n × n special unitary matrices. Wigner D-functions of SU(2) group elements are

used in nuclear, atomic and molecular physics [1–3]. In the Standard Model of particle

physics, SU(2), SU(3) and SU(6) D-functions are used to describe transformations that

preserve global or local symmetries [4–6].

Recently, SU(n) transformations have been the subject of considerable interest be-

cause of the BosonSampling problem. The output from an n-channel passive opti-

cal interferometer affecting a SU(n) transformation on indistinguishable single-photon

pulse inputs is computationally hard classically subject to conjectures [7–9]. The ac-

tion of three-channel optical interferometers on partially distinguishable single-photon

inputs is best described by SU(3) D-functions [10–12].

D-functions of SU(2) group elements are well studied and tabulated [13]. SU(3)

D-functions in a weight basis can be calculated as products of SU(2) Wigner D-

functions [14, 15]. D-functions in the weight basis, which connect eigenstates of the

weight-basis elements of su(n), su(n − 1) . . . su(2) Lie algebras, are especially suitable

for studying permutational symmetric Bosonic systems. D-functions in the Gelfand-

Tsetlin basis for su(n) algebras can be constructed [16,17] but these functions lack the

manifest permutational symmetries that arise in physical systems like BosonSam-

pling interferometers.

Problem Statement

Despite the importance of D-function in physics, there is no known procedure to an-

alytically compute the SU(n) Wigner D-functions for n ≥ 4 in the weight basis. The

unavailability of expressions for the SU(n) Wigner D-functions hinders us from explor-

ing and exploiting the rich group-theoretic structure of optical interferometry.

In this paper, we (1) devise a symbolic algorithm to compute expressions for states

of SU(n) irreducible representations (irreps) in the weight-basis, (2) devise a symbolic

algorithm to compute expressions for Wigner D-functions of SU(n), and (3) employ

D-functions to compute outputs from SU(4) interferometery and relate these outputs

to determinants, immanants and permanents of the SU(n) transformation matrices.
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High-level Overview of Algorithms

Our procedure to calculate the expressions for the Wigner D-function in the weight

basis consists of two key algorithms. The first algorithm returns an expression for the

weight-basis states corresponding to each weight vector that occurs in the given SU(n)

irrep. The second algorithm uses the basis sets constructed in the first algorithm to

find the Wigner D-functions that transform one weight-basis state into another.

We calculate the basis set at each weight state using a graph-theoretic algorithm

on the weight graph (multiplet) of the given SU(n) irrep. We define the weight graph

G = (W,E) of an SU(n) irrep as follows. The set W = {wi} of vertices is the set of

weights of a given irrep of SU(n) and the edges ej ∈ E represent the action of the

elements of the Lie algebra su(n) on the weight-basis states, i.e., ej = (wk, w`) ∈ E

iff ∃ operator c ∈ su(n) weight basis such that c(ψwk
) = ψw`

, where ψwk
and ψw`

are

SU(n) basis states with weights wk and w` respectively. Each vertex wi is occupied by

a vector space of dimension equal to the multiplicity M(wi) of the weight [18]. The

output from our algorithm is a set of basis state for the vector space at each vertex.

The basis-states construction algorithm starts with a symbolic expression for the

highest weight state, which is annihilated by all su(n) raising operators and is known

to have a multiplicity M(vihws
) = 1. The algorithm then searches the weight graph

for SU(n) states using lowering operators of the su(n) algebra in an order inspired by

breadth-first graph search. If the current vertex in the graph search has multiplicity

greater than one, we obtain different states on approaching the vertex along different

paths and employ the Gram-Schmidt procedure to obtain an orthonormal basis set.

The algorithm halts when a basis set at each vertex is found and returns a list of

expressions for the basis states of the vector space at each vertex.

The second algorithm calculates the Wigner D-functions that transform a basis

state of one given SU(n) irrep label to a basis state with another given irrep label. We

compute the expressions for basis states corresponding to the two given labels. Next,

we compute the expression for the transformed (by the given SU(n) matrix element)

basis state by pattern matching [19]. The overlap between the second basis state and

the transformed first basis state is the Wigner D-function of interest. The D-functions

obtained by the algorithm were successfully verified by numerically comparing with

approximate D-functions computed by exponentiating elements of the algebra.

Application to Four-Channel Passive Optical Interferometer

We use SU(4) Wigner D-functions that were calculated by our algorithm to determine

the action of a four-channel passive optical interferometer when controllably-delayed

single-photon pulse are incident at each input port. We determine four-photon coinci-

dence rates around zero time delay in terms of SU(4) Wigner D-functions. We connect

temporal distinguishability of input photons with linear combinations of immanants
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of the SU(4) interferometer matrix. Immanants of a matrix are quantities of varying

computational complexity [20] and generalize the permanent and determinant, which

are relevant for input states with permutation symmetry. Using Wigner D-functions

leads to a reduction in the computation cost of coincidence landscapes and the con-

nection with immanants allows for a rigorous computational complexity analysis of the

optical interferometer.

Conclusion and Potential Impact

In summary, we have devised symbolic algorithms to compute expressions for states of

SU(n) irreps and expressions for SU(n) Wigner D-functions in the weight-basis. We

have used the obtained D-functions to compute coincidence landscapes of SU(4) inter-

ferometry and relate these landscapes to determinants, immanants and permanents of

the SU(4) transformation matrix.

OurD-function calculation algorithm opens the possibility of applying graph-theoretic

methods to SU(n) group theory. This work also generalizes passive optical interferome-

try beyond the three-photon level [10–12]. We find the connection between coincidence

landscapes and immanants of SU(n) transformation matrices, thereby generalizing the

matrix permanent analysis of the BosonSampling problem.
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