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The comparison of communication protocols using quantum messages with
protocols using classical messages is a central topic in information and communi-
cation theory. It is always good to understand such questions well in the simplest
settings where they arise. An example is the setting of one-way communication
complexity, which is rich enough to lead to many interesting questions, yet acces-
sible enough for us to prove results about questions like the relationship between
different computational modes, e.g. quantum versus classical or nondeterministic
versus deterministic.

1 One-way Communication Complexity

Perhaps the simplest question one can ask about the power of quantum messages
is the relationship between quantum and classical one-way protocols. Alice sends
a message to Bob in order to compute the value of a function f : {0, 1}n ×
{0, 1}m → {0, 1}. Essentially, Alice communicates a quantum state and Bob
performs a measurement, both depending on their respective inputs. Though
deceptively simple, this scenario is not at all fully understood. Let us just mention
the following open problem: what is the largest complexity gap between quantum
and classical protocols of this kind for computing a total Boolean function? The
largest gap known is a factor of 2, as shown by Winter [11], but for all we
know there could be examples where the gap is exponential, as it indeed is for
certain partial functions (i.e., functions that are only defined on a subset of
{0, 1}n × {0, 1}m) [5].

An interesting bound on such speedups can be found by investigating the
effect of replacing quantum by classical messages. Suppose a total Boolean func-
tion f has a quantum one-way protocol with communication c, namely Alice
sends c qubits to Bob, who can decide f with error 1/3 by measuring Alice’s mes-
sage. We allow Alice and Bob to share an arbitrary input-independent entangled
state. Extending Nayak’s random access code bound [8] Klauck [7] showed that
QA→B,∗(f) ≥ Ω(V C(f)), where QA→B,∗(f) denotes the entanglement-assisted
quantum one-way complexity of f , and V C(f) the Vapnik-Chervonenkis dimen-
sion of the communication matrix of f . Together with Sauer’s Lemma [9] this
implies that DA→B(f) ≤ O(QA→B,∗(f) · m), where m is the length of Bob’s
input.
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A result such as the above is much more interesting in the case of partial
functions. Aaronson [1] showed a weaker result for partial functions in the follow-
ing way: Bob tries to learn Alice’s message. He starts with a guess (the totally
mixed state) and keeps a classical description of his guess. Alice also always
knows what Bob’s guess is. Bob can simulate quantum measurements by brute-
force calculation: for any measurement operator Bob can simply calculate the
result from his classical description. Alice can do the same. Since Bob has some
2m measurements he is possibly interested in, Alice can just tell him on which of
these he will be wrong. Bob can then adjust his quantum state accordingly, and
Aaronson’s main argument is that he does not have to do this too often before
he reaches an approximation of the message state. Note that Bob might never
learn the message state if it so happens that all measurements are approximately
correct on his guess. But if he makes a certain number of adjustments he will
learn the message state and no further adjustments are needed.

Let us state Aaronson’s result from [1].

Fact 1. DA→B(f) ≤ O(QA→B(f) · log(QA→B(f)) · m) for all partial Boolean
f : {0, 1}n × {0, 1}m → {0, 1}.

Aaronson [2] later also proved the following result, that removes the log-factor
at the expense of having the randomized complexity on the left hand side.

Fact 2. RA→B(f) ≤ O(QA→B(f) · m) for all partial Boolean f : {0, 1}n ×
{0, 1}m → {0, 1}.

Our first result is the following improvement of the above statements.

Result 1. DA→B(f) ≤ O(QA→B,∗(f) ·m) for all partial Boolean f : {0, 1}n ×
{0, 1}m → {0, 1}.

Hence we remove the log-factor, and we allow the quantum communication
complexity on the right hand side to feature prior entanglement between Alice
and Bob. Arguably, looking into the entanglement-assisted case (which is inter-
esting for our second main result) led us to consider a more systematic progress
measure than in Aaronson’s proof, namely the relative entropy between the cur-
rent guess and the target state. Using this measure in turn allowed us to analyze
a different update rule for Bob’s guess states that also works for protocols with
error 1/3, instead of the extremely small error used in [1], which is the cause of
the lost log-factor. While an improvement by a mere logarithmic factor might
seem unimportant, we note that having tight bounds for such basic questions
is generally desirable, e.g., Nayak’s bound for random access codes [8] is an
improvement by a logarithmic factor over previous work.

2 The Power of Quantum Proofs

We now turn to the second result of our paper, which is philosophically the more
interesting. Interactive proof systems are a fundamental concept in computer



Two Results about Quantum Messages 3

science. Quantum proofs have a number of disadvantages: reading them may
destroy them, errors may occur during verification, verification needs some sort
of quantum machine, and it may be much harder to provide them than classical
proofs. The main hope is that quantum proofs can in some situations be verified
using fewer resources than classical proofs. Until now such a hope has not been
verified formally. In the fully interactive setting Jain et al. have shown that
the set of languages recognizable in polynomial time with the help of a quantum
prover is equal to the set where the prover and verifier are classical (i.e., IP=QIP
[6]).

The question remains open in the noninteractive setting. Aharonov and
Naveh [4] first asked whether the proofs that are in quantum states can ever
be easier to verify than classical proofs (by quantum machines) in the absence of
interaction, i.e., whether the class QMA is larger than its analogue with classi-
cal proofs but quantum verifiers, known as QCMA. An indication that quantum
proofs may be powerful was given by Watrous [10], who described an efficient
QMA black-box algorithm for deciding nonmembership in a subgroup. However,
Aaronson and Kuperberg [3] later showed how to solve the same problem ef-
ficiently using a classical witness, giving a QCMA black-box algorithm for the
problem. They also introduced a quantum problem, for which they show that
QMA black-box algorithms are more efficient than QCMA black-box algorithms.
Using a quantum problem to show hardness for algorithms using classical proofs
seems unfair though, and a similar separation has remained open for Boolean
problems.

In our second main result we compare the two modes of noninteractive proofs
and quantum verification for a Boolean function in the setting of one-way com-
munication complexity. More precisely we exhibit a partial Boolean function f ,
such that the following holds. f can be computed in a protocol where a prover
who knows x, y can provide a quantum proof to Alice, and Alice sends quantum
message to Bob, such that the total message length (proof plus message Alice to
Bob) is O(log n). In the setting where a prover Merlin (still knowing all inputs)
sends a classical proof to Alice, who sends a quantum message to Bob, the total
communication is Ω(

√
n/ log n).

Result 2. There is a partial Boolean function f such that QMAA→B(f) =
O(log n), while QCMAA→B,∗(f) = Ω(

√
n/ log n).

We note that this is the first known exponential gap between computing a
Boolean function in a QCMA- and a QMA-mode in any model of computation.

For the lower bound we use that once a classical proof that applies to a
large set of 1-inputs proof has been fixed, we are left with a quantum one-way
protocol for a partial function that accepts those 1-inputs with high probability,
yet rejects all 0-inputs with high probability. Our first result then lets us obtain
a deterministic protocol for this partial function. The lower bound then follows
from showing that any such partial function must have large deterministic one-
way communication complexity.
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