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Any continuous-variable computation is accompanied by Gaussian noise that distorts the information  
in the system and requires specifically tailored error correction and fault tolerance schemes to be  
applied.  We show that  performing arbitrary  linear optics  gates  via measurement-based quantum  
computation on an entangled resource state known as the quad-rail lattice can be modelled by a loss  
channel rather than by a Gaussian noise model. We do this by incorporating gain tuning into our  
system, which has been shown to convert a teleportation channel into a loss channel. Depending on  
the architecture or encoding of the system, a loss channel could be more suitable. For example, in the  
case where we encode a qubit with a single photon distributed between two modes. In this encoding,  
we  show that  we  are  able  to  achieve  all  single-qubit  rotation  operations  within  a  loss  channel  
framework. 

Measurement-based  quantum computation  (MBQC)  [1]  is  a  well-established  and  highly  pursued 
implementation of a quantum computer. In this model, a series of adaptive, single-qubit measurements 
on an entangled resource state (generally called a cluster state) are sufficient to perform any quantum 
computation. In the realm of continuous-variable MBQC [2], the cluster state is canonically realised 
analogously to the discrete-variable (qubit) case except the qubits are replaced by modes (infinite  
dimensional quantum states). The canonical implementation of such states is physically difficult to 
perform and not particularly scalable, motivating the use of an alternate implementation [3] which  
relies  on less  experimentally-taxing physical  resources  and has  been recently demonstrated to  be 
highly scalable [5]. We call the resource state for such implementations the quad-rail lattice. We can 
represent  cluster  states  within  a  graphical  framework  [4];  in  Figure  1  we  depict  a  canonical 
continuous-variable cluster state (top) as well as the quad-rail lattice (bottom) graphically.

Figure : Graphical representation of the canonical continuous-variable cluster state (top) and the more physically-
motivated quad-rail lattice (bottom). The details of this mapping can be found in [3]. 



A significant hurdle faced by continuous-variable implementations of MBQC is inherent Gaussian 
noise that is due to the fact that modes are approximations of ideal continuous-variable eigenstates. A 
well-known result in continuous-variable quantum teleportation is  that by gain tuning (tuning the 
correction operator in the teleportation scheme) [6] a teleportation network can be modelled as a pure  
loss channel. There has been recent interest in hybrid models of computation [7], whereby gain tuning  
is used to achieve high fidelity teleportation of qubits which are encoded in modes. In Figure we 
illustrate the effect of a regular teleportation network (a) and a gain-tuned teleportation network (b) on 
an input coherent state. These illustrations emphasise that a loss channel simply reduces the numbers  
of photons in the state (according to some probability that is proportional to the squeezing parameter 
of the entangled resource state), while a Gaussian noise channel blurs the state in phase space. 

Figure 2: a) Phase space depiction of what a regular teleportation network does to an input coherent state. The left  
picture depicts the state before the channel while the right picture depicts the original state in dashed lines and the 
output state in black. As we see, noise has been introduced to the system and the coherent state shape widens. b)  
Phase space depiction of what a gain-tuned teleportation network does to an input coherent state. The left picture 
depicts the state before the channel while the right picture depicts the original state in dashed lines and the output 
state in black. As we see, the shape of the state has not changed but it has moved closer to the origin (lost photons). 
The degree of movement towards the origin is comparable to the size of the blur.

This work combines these two seemingly separate aspects of continuous-variable information science: 
the quad-rail lattice and the gain tuning result. What allows us to apply gain tuning to the quad-rail 
lattice is the fact that the quad-rail lattice can be interpreted as a teleportation network simply by a  
change of mode definitions [7].  

We show that any series of linear optics gates (beamsplitters and phase shifters) can be implemented  
on the quad-rail in a way that utilises the gain-tuning result and allows for the computation to be 



modelled as a loss channel. To show this, we use interferometric symmetries of entangled Gaussian 
states to prove that each of the measurement schemes corresponding to these gates can be interpreted 
as a regular teleportation network followed by the unitary gates. This allows us to model a linear 
optics computation on the quad-rail lattice with a loss channel (rather than Gaussian noise).

A loss channel noise model could be advantageous when considering a qubit encoded within the quad-
rail lattice. If we distribute a single photon between two modes of the quad-rail lattice: 
|ψ>=α|0,1>+β|1,0>, the channel either destroys the single photon, leaving a vacuum state as output, or 
the photon ‘survives’ the channel and the teleported state is preserved with no Gaussian noise applied  
to it. The density matrix of the final state is thus: ρ= tanh 2 r  |ψ>< ψ| + (1- tanh 2 r )|0><0|, 

where  r  is  the  squeezing  parameter  of  the  entangled  resource  states.  In  the  qubit  mapping,  a 
beamsplitter gate corresponds to a rotation about Y and the phase-shift gate corresponds to a rotation  
about Z. Our results thus imply that any single-qubit unitary can be applied on the quad-rail lattice 
within the loss channel noise model framework rather than with Gaussian noise. Our results motivate 
the  investigation  of  error-detecting  loss  codes  for  MBQC with  continuous  variables  as  well  as  
exploring  hybrid  models  of  computation  and  could  potentially  be  applied  to  existing  models  of 
universal quantum computation that require linear optics gates, such as the KLM scheme [8].
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