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Protecting a qubit in unknown state against decoherence is one of crucial concerns when one regards practical
implementations of quantum communication and computation; it also constitutes a problem of reliable quantum
memory on its own. The so called threshold theorem [1] states that every quantum computation can be realized with
arbitrary precision provided the error probability is below some threshold value, with polylogarithmic overhead in
space and time. Stabilizer formalism [2], analogical to construction of classical binary linear codes, o�ers a framework
for description of many codes granting protection in the sense of threshold theorem. In topological stabilizer codes,
stabilizer group can be generated by local operators, which implies that logical subspace is protected from the local
noise. We present a simple, general procedure of encoding and decoding a qubit in unknown state for broad class of
CSS topological codes [3�5]. We brie�y describe the fault-tolerant version of the protocol and note that the �delity
of quantum memory based on its application to some CSS codes scales as 1−O(p) in a large code size limit, where p
is a probability of error on a single qubit per time step.
Before presenting the decoding/encoding protocol, it is necessary to introduce the notation and concept of stabilizer

codes. The logical codespace Hlog of a stabilizer code, i.e. the subspace of the Hilbert space Hsystem = ⊗iHi of N
qubits, with i-th qubit de�ned on Hilbert space Hi (dimHi = 2), is spanned by eigenvectors with eigenvalue 1 of the
stabilizer group elements S: {|Ψ⟩ : s|Ψ⟩ = |Ψ⟩, ∀s ∈ S}. Here S is an abelian subgroup of Pauli group PN such that
−I ̸∈ S, where I is an identity operator on Hsystem, and PN is generated by {σA

i }, where bottom index indicates

particular qubit i = {1, . . . , N}, upper index A = {X,Y, Z} describes one of the Pauli matrices given by X =

[
0 1
1 0

]
,

Y =

[
0 −i
i 0

]
and Z =

[
1 0
0 −1

]
, and σA

i = I1 ⊗ · · · ⊗ Ii−1 ⊗ Ai ⊗ Ii+1 · · · ⊗ IN . G(S), generator of S, can always

be found to be the set of hermitian mutually commuting operators from the Pauli group PN . Logical operators
of the code are those operators from PN which commute with all operators from G(S), but are not generated by
them. Because S is abelian, logical operators are de�ned modulo G(S). If we denote by N − |G(S)| = D, where
|G(S)| is the number of elements of G(S), then we can write dimHlog = 2D and Hlog = HL,1 ⊗ · · · ⊗ HL,D. The
set of operators commuting with S is {ZL,1, XL,1, . . . , ZL,D, XL,D, S}. ZL,i, XL,i create a pair of complementary
observables (logical operators) acting on HL,i, i.e. i-th logical qubit subsystem of Hlog (dimHL,i=2). They obey
the following commutation and anti-commutation relations: ZL,iXL,i = −XL,iZL,i and [XL,i, ZL,j ] = 0 for i ̸= j as
well as [XL,i, XL,j ] = 0 and [ZL,i, ZL,j ] = 0 for arbitrary i and j. We now consider one of N physical qubits which
is labeled by index i ∈ [1, . . . , N ]. Without loss of generality we assume that it is in a αi|0⟩i + βi|1⟩i state (where
{|0⟩i, |1⟩i} is the set of eigenvectors of Zi), i.e. it is non entangled with other qubits. We de�ne encoding i-th qubit
into the i-th logical qubit described on system HL,i as a process after which the i-th logical qubit is in the state
|ΨLi⟩ = αi|0⟩L,i+βi|1⟩L,i, where {|0⟩L,i, |1⟩L,i} is the set of eigenvectors of a logical operator ZL,i on subsystem HL,i.
We de�ne decoding as reversed process.
Because the �delity of quantum process depends only on the outcomes of measurements on two complementary

sets of input states [6], to prove the correctness of encoding/decoding procedure it is enough to show that it performs
a mapping between the eigenstates of Xi, Zi (acting on Hi) and XL,i, ZL,i (acting on HL,i), respectively.

Encoding/decoding of an unknown qubit state into/from CSS stabilizer code with ZL,i and XL,i crossing at a single
point. We select Hi arbitrarily and identify the corresponding vertex of the lattice with an intersection point of logical
operators (Fig.1(a)). Using the fact that in CSS codes ZL,i (XL,i) is a tensor product of Z (X) single qubit operators
and identities, we make the parity of operators ZL,i (XL,i) dependent only on the state of the i-th physical qubit.
To this end we prepare all other qubits on which ZL,i (XL,i) acts non-trivially (labeled here by k (l)) in eigenstates
associated with +1 eigenvalues of Zk (Xl). Since we assumed that ZL,i and XL,i operators cross at a single point,
preparing procedures are independent. We will use the convention: Zi|0⟩i = +|0⟩i, Zi|1⟩i = −|1⟩i, Xi|+⟩i = +|+⟩i,
Xi|−⟩i = −|−⟩i. Remaining qubits (i.e. those on which logical operators ZL,i and XL,i act trivially) are prepared in
such a way that qubits on which ZL,i (XL,i) acts non-trivially are surrounded by qubits in |0⟩ (|+⟩) states.
In order to drive a system state into a subspace Hlog, we measure stabilizer generators and join those of Z-type
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FIG. 1: (a) Logical operators crossing at one physical qubit. (b) Logical operators crossing at many physical quits. Note that
this is schematic picture. In reality the logical operators need not be the strings, and codes need not be planar. We put a
qubit which we want to encode at one of crossing points (black cross). We prepare other qubits on which only one of logical
operators ZL and XL acts non-trivially in states |0⟩ and |+⟩, respectively. In case of many crossing points we divide qubits on
which both logical operators act non-trivially (red crosses) into pairs and prepare each pair in the maximally entangled state
1√
2
(|0⟩i,k|0⟩i,j + |1⟩i,k|1⟩i,j) where (i, k) and (i, j) label qubits composing each pair.

(X-type) that gave outcome −1 by chains of X (Z) operators. Chains of X (Z) that cross logical operators ZL,i

(XL,i) change their parity. However, as we can track the number of times it happens, we can revert this parity change
by performing additional XL,i (ZL,i) operation whenever this number is odd. Moreover, in many speci�c cases of CSS
codes [7�10] it happens that the matching can always be performed in a way that does not a�ect the parity of logical
operators and no additional corrections are needed at all. Therefore, desired mapping |0⟩i → |0⟩L,i, |1⟩i → |1⟩L,i,
|+⟩i → |+⟩L,i, |−⟩i → |−⟩L,i is realized, where |0⟩L,i, |1⟩L,i, |+⟩L,i, |−⟩L,i are eigenvectors of logical operators ZL,i,
XL,i.
Decoding procedure of a logical qubit stored within HL,i logical subspace of CSS code, with ZL,i, XL,i logical

operators crossing at a single physical qubit i, consists of performing single qubit measurement in Zk (Xl) basis on
all the qubits where ZL,i (XL,i) is non-trivially de�ned, except for the i-th physical qubit (Fig.1(a)). From those
measurements the parity of truncated operator ZT,i (XT,i) is calculated, where truncated operators are analogous to
logical operators ZL,i and XL,i, with the only di�erence that they act on i-th qubit trivially. If computed parity is
odd, an operator Xi (Zi) is applied to the qubit de�ned on Hi. This performs a demanded mapping |0⟩L,i → |0⟩i,
|1⟩L,i → |1⟩i, |+⟩L,i → |+⟩i, |−⟩L,i → |−⟩i.

Encoding/decoding of an unknown qubit state into/from a CSS stabilizer code with ZL,i and XL,i crossing at more
than one qubit. This case is illustrated schematically in Fig.1(b), where ZL,i, XL,i operators act non-trivially on line
of qubits. However, the following schemes are applicable to codes with arbitrary structure of logical operators. In
addition, if logical operators ZL,i and XL,i cross at neighboring qubits, then our encoding will be local. This is the
case for Haah code [11], where ZL,i, XL,i are nontrivially de�ned on surfaces of 3-dimensional rectangular lattice,
with every vertex occupied by two qubits. To our best knowledge, no encoding scheme applicable to important class
of Haah codes was proposed so far.
By (i, k) we denote qubits on which at least one of logical operators ZL,i, XL,i acts non-trivially. We choose a

qubit to be encoded (i, l) as one of the qubits at intersection points. As before, we prepare all physical qubits on
which only one logical operator acts nontrivially in the appropriate eigenstate of single qubit Pauli operators Zi,k

(for ZL,i) and Xi,k (for XL,i). Even number of qubits on which both logical operators act non-trivially (not taking
here into account the (i, l) qubit) can always be divided into pairs consisting of qubits (i, j1) and (i, j2) that are
prepared in eigenstates of Zi,j1 ⊗ Zi,j2 and Xi,j1 ⊗ Xi,j2 corresponding to eigenvalues 1, i.e. maximally entangled
states 1√

2
(|0⟩i,j1 |0⟩i,j2 + |1⟩i,j1 |1⟩i,j2). Note that these operators commute. Such preparation scheme makes the parity

of ZL,i (XL,i) dependent only on the eigenvalue of Zi,l (Xi,l), as required. We drive the state of the system into Hlog

by performing a sequence of measurements and applying appropriate corrections (bit-�ips and phase-�ips operations)
that either do not change the parity of logical operators (due to obeyed commutation relations) or change the parity
(which can be �xed by applying additional logical operator to the code, as explained before). As an example, we
present a preparation scheme for the encoding procedure for Haah code in Fig. 2.
Decoding procedure relies on measuring the parity of truncated operators ZT,i and XT,i. In case of codes with

logical operators crossing at one qubit i, the parity of truncated operators can be calculated from the measurements of
single qubit Pauli operators, as there is no qubit k enforcing anti-commutation relation of Zk and Xk measurements.
Decoding procedure for codes with logical operators crossing at larger number of qubits relies on the same idea for
solving the non-commutativity problem as the encoding one: we divide an even number of qubits on which both
truncated operators act non-trivially, and perform commuting measurements of Zi,j1 ⊗ Zi,j2 and Xi,j1 ⊗Xi,j2 . After
the parity of truncated logical operators is calculated, the (i, l) qubit is �ipped by Xi,l (Zi,l) if the parity of ZT,i



3

STATE PREPARATION

|0ñ

|+ñ

STABILIZERS

X
L

Z
L

IZ ZI

IZ

ZIIŻ

ZI

II

IX XI

IX

XIIX

XI

XX

a)

b)

|f ñ
+

}

}

}

}

|yñ=a|0ñ+b|1ñ

|f ñ
+

|f ñ
+

|f ñ
+

ZI ZZ

II

FIG. 2: Preparation for encoding procedure for Haah code [11]. (a) Code structure. Each vertex is associated with two code
qubits. Stabilizer generators of types X and Z form cubes. Exemplary logical operators XL and ZL associated with blue and
green planes cross on a line. (b) Preparation of a lattice. Logical operators XL and ZL (blue and green plane) cross at a
line. Due to the structure of the code, there are two code qubits placed on each vertex in that line. First qubit of each pair
is initialized in state |0⟩. In the centre of a thick black line composed of second qubits of every pair, red qubit is inserted.
Remaining qubits lying on that line are combined in pairs and every such pair is prepared in maximally entangled state |ϕ+⟩.
Qubits in green and blue regions are initialized in states |0⟩ and |+⟩, respectively.

(XT,i) is odd.
Fault-tolerant scenario. We brie�y describe a noisy scenario, where qubits are subjected to bit-�ip and phase-�ip

errors (while being stored and prepared) and where measurements can be faulty. Such noisy syndrome measurement is
modeled by �ipping the ideal measurement outcome with some probability. We assume that probabilities of a bit-�ip,
phase-�ip and syndrome measurement errors are equal to p. The general idea is to prepare all qubits as demanded
by non fault-tolerant procedure, measure Xs and Zp stabilizers many times in the area con�ned by the whole lattice
(except for the last time step where X and Z operators are measured), store all error syndromes and use them to
apply error correcting procedure. It can be shown that the �delity of quantum memory based on Bavyi subsystem
code [10] and our fault-tolerant encoding/decoding algorithm is lower bounded by 1 − O(p) for p < 0.0039. In a
similar way one can obtain �delity bounds for Kitaev code on a torus [7], and planar code with holes [8, 9].
In conclusions, we introduced a simple, single shot procedure for encoding/decoding an unknown state into/from

logical subspace of CSS codes. The encoding procedure relies on preparing a system in a way that makes the parity
of logical operators dependent only on the state of a selected qubit of the system, and on driving the state of the
system into a logical subspace by sequence of operations that commute with logical operators.
Proposed general encoding/decoding processes require entanglement preparation/measurement, hence it may be,

in principle, nonlocal for some codes. However, when the qubits at which logical operators cross are situated on the
adjacent vertices of the code structure, this can be achieved locally, as in the Haah code.
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