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We consider asymptotic hypothesis testing (or state discrimination with asymmetric treat-
ment of errors) between an arbitrary fixed bipartite pure state |Ψ〉 and the completely mixed
state under one-way LOCC, two-way LOCC, and separable POVMs. As a result, we derive
the Hoeffding bounds under two-way LOCC POVMs and separable POVMs. Further, we de-
rive a Stein’s lemma type of optimal error exponents under one-way LOCC, two-way LOCC,
and separable POVMs up to the third order, which clarifies the difference between one-way
and two-way LOCC POVM. Our study gives a very rare example in which the optimal per-
formance under the infinite-round two-way LOCC is also equal to the one under separable
operations, and can be attained with two-round communication, but cannot be attained with
the one-way LOCC.

Background: When a distant bipartite system is given as two parties, Alice and Bob, it is natural to
restrict their operations to local operation and classical communication (LOCC) [50] because it is
not so easy to realize a quantum operation across both of the distant systems. LOCC operations can
be classified by the direction of classical communication. When the direction of classical communi-
cation is restricted to only one direction, the LOCC operation is called a one-way LOCC. Otherwise,
it is called a two-way LOCC. Although a one-way LOCC operation requires only one-round classi-
cal communication, a two-way LOCC operation does plural-round classical communication. In this
case, a two-way LOCC protocol with k-round classical communication has k + 1 steps. For exam-
ple, in the case of 2-round classical communication, the total protocol is given as follows when the
initial operation is done by Alice: First, Alice performs her operation with her measurement and
sends her outcome to Bob. Second, Bob receives Alice’s outcome, performs his operation with his
measurement, and sends his outcome to Alice. Third, Alice receives Bob’s outcome and performs
her measurement.

To consider the relation between accessible information and these kinds of restrictions for the
operations, many studies state discrimination with LOCC restriction for our measurement [1–30].
In this paper, we focus on hypothesis testing (state discrimination with asymmetric treatment of
errors) of a pair of quantum states. When our operations are limited to one-way LOCC operations
or two-way LOCC operations, hypothesis testing is called local hypothesis testing. If we do not
impose any constraint for our measurement, a general asymptotic theory has been established even
for the quantum case when multiple copies of the unknown states are available. For example, Hiai
et al. [47] and Ogawa et al. [44] derived the quantum version of Stein’s bound [35], i.e., the optimal
exponent of the second error under the constant constraint for the first error. Audenaert et al. [31]
and Nussbaum et al. [39] did the quantum version of the Chernoff bound [35], i.e., the optimal
exponent of the sum of the first and second errors. Other papers [32, 38] did the quantum version
of the Hoeffding bound [40, 45, 46], which is the optimal exponent of the second error under the
exponential constraint for the first error, and can be considered as a generalization of the Chernoff
bound. However, when we impose the one-way or two-way LOCC constraint on our measurement,
these problems become very difficult, and they have not been solved completely. In particular, it
is quite difficult to solve these problems for an arbitrary fixed pair of quantum states.

To avoid a difficulty caused by generality, this paper discusses the problem of distinguishing
an arbitrary fixed pure entangled state |Ψ〉 from the white noise state, i.e., the completely mixed
state. In the non-asymptotic setting, our previous paper [15] addressed the problem under the
constraint that |Ψ〉 is detected with probability 1, and our previous paper [34] did it in a more
general setting. In particular, the paper [34] proposed concrete two-round classical communication
two-way LOCC protocols that are not reduced to one-way LOCC. Then, our previous paper [36]
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extended the problem to the case when the entangled state is given as the n-copy state of a certain
entangled state. As asymptotic results, it showed that there is no difference between one-way and
two-way LOCC for the Stein’s bound, i.e., the optimal exponent of the second error under the
constant constraint for the first error. To make an upperbound of the optimal performance of
the two-way LOCC case, these papers [15, 34, 36] also considered the performance in the case of
separable operations, which can be easily treated because of their mathematically simple forms.
The class of separable operations includes LOCC, but there exist a separable operations which are
not LOCC [3].

However, our previous paper [36] could not derive the Hoeffding bound for two-way LOCC, i.e.,
the optimal exponent of the second error under the exponential constraint for the first error, while
it derived it for one-way LOCC. Further, even under the constant constraint for the first error,
the paper did not consider the higher order of the decreasing rate of the second error. Indeed, in
information theory, Strassen [37] derived the decreasing rate of the second error up to the third-
order log n under the same constraint in the classical setting when n is the number of available
copies. Tomamichel et al [42] and Li [41] extended this result up to the second order

√
n.

Our obtained results: In this paper, we derive the Hoeffding bound for two-way LOCC and the
optimal decreasing rate of the second error under the constant constraint for the first error up to the
third-order log n for one-way and two-way LOCC. We also derive them for separable measurements.
Then, we find the following:

(1) There is a difference in the Hoeffding bound between the one-way and two-way LOCC con-
straints unless the entangled state |Ψ〉 is maximally entangled. However, there is no difference
in the Hoeffding bound between two-way LOCC and separable constraints.

(2) The optimal decreasing rate of the second error under the constant constraint for the first error
has no difference between the one-way and two-way LOCC constraints up to the second order√
n, but has a difference in the third order log n unless the entangled state |Ψ〉 is maximally

entangled. On the other hand, this optimal decreasing rate has no difference between the
two-way LOCC and separable constraints up to the third order log n.

(3) Three-step two-way LOCC protocol proposed in [34] can achieve the Hoeffding bound as well
as the optimal decreasing rate of the second error under the constant constraint for the first
error up to the third order log n for two-way LOCC.

Mathematical description of obtained results: A single copy of a bipartite Hilbert space is written

as HAB
def
= HA⊗HB, and its local dimensions are written as dA

def
= dimHA and dB

def
= dimHB. We

consider asymptotic hypothesis testing between n-copies of an arbitrary known pure-bipartite state

|Ψ〉 with the Schmidt decomposition as |Ψ〉 def
=
∑d

i=1

√
λi|i〉 ⊗ |i〉 and n-copies of the completely

mixed state (or the white noise) ρmix
def
= IAB

dAdB
under the various restrictions on available POVMs:

global POVMs, separable POVMs, one-way LOCC POVMs, and two-way LOCC POVMs [49, 50].
We choose the completely mixed state ρ⊗nmix as a null hypothesis and the state |Ψ〉⊗n as an alternative
hypothesis. The optimal type-2 error under the condition that the type-1 error is no more than a
constant α ≥ 0 is written as

βLn,C(α|Ψ‖ρmix)
def
= min

Tn:0≤Tn≤I
{log βn(Tn) | αn(Tn) ≤ α, {Tn, I − Tn} ∈ C} , (1)

where βn(Tn) := 〈Ψ|⊗nTn|Ψ〉⊗n, αn(Tn) := Tr(I − Tn)ρ⊗nmix, and C is either →, ↔, Sep, or g
corresponding to a classes of one-way LOCC, two-way LOCC, separable and global POVMs, re-
spectively. Further, we denote the class of two-way LOCCs with k-round classical communication
by ↔, k. In this notation, ↔, 1 is equivalent with →.

We introduce the Rényi entropy H1−s(Ψ) :=
log

∑
i λ

1−s
i

s of the entangled state |Ψ〉, and H1(Ψ)
is defined as the limit lims→0H1−s(Ψ). By using the Rényi entropy H1−s(Ψ), the entropy of
the entanglement E (|Ψ〉), the Schmidt rank RS(|Ψ〉) [49, 50], and the logarithmic robustness of
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entanglement LR(|Ψ〉) [51, 52] are characterized as E (|Ψ〉) = H1(Ψ), logRs(|Ψ〉) = H0(Ψ), and
LR(|Ψ〉) = H1/2(Ψ). In the following, for the unified treatment, we only use the notation H1−s(Ψ).
We also prepare the quantity V (Ψ) :=

∑
i λi(log λi +H1(Ψ))2.

Our previous paper [36] showed that the Stein bounds are given as follows. For a given ε > 0,
we have the following expansion.

βLn,→ (ε|Ψ‖ρmix) = βLn,↔ (ε|Ψ‖ρmix) + o(n) = βLn,sep (ε|Ψ‖ρmix) + o(n) = −n(log dAdB −H1(Ψ)) + o(n).

(2)

In [36], we also characterized the Hoeffding bounds as follows.

lim
n→∞

− 1

n
βLn,→

(
e−nr|Ψ‖ρmix

)
= sup

0≤s<1

−s
1− s

r −Hs(Ψ) + log dAdB. (3)

Further, for the specific parameter r satisfying r ≥ log d− 1
4H
′
1/2, [36] also showed

lim
n→∞

− 1

n
βLn,→

(
e−nr|Ψ‖ρmix

)
= log dAdB −H1/2. (4)

As a refinement of (2), we obtain the following for a given ε > 0:

βLn,→ (ε|Ψ‖ρmix) =− n(log dAdB −H1(Ψ)) +
√
n
√
V (Ψ)Φ−1(ε)− 1

2
log n+O(1) (5)

βLn,↔ (ε|Ψ‖ρmix) =βLn,sep (ε|Ψ‖ρmix) +O(1) = −n(log dAdB −H1(Ψ)) +
√
n
√
V (Ψ)Φ−1(ε)− log n+O(1),

(6)

where Φ(x) :=
∫ x
−∞

e−y2/2
√
2π

dy. The above relations show that the difference between βLn,→ (ε|Ψ‖ρmix)

and βLn,↔ (ε|Ψ‖ρmix) exists only in the order log n. We also completely characterized the Hoeffding
bounds of two-way LOCC and separable cases without any restriction for the parameter r as follows:

lim
n→∞

− 1

n
βLn,↔

(
e−nr|Ψ‖ρmix

)
= lim

n→∞
− 1

n
βLn,sep

(
e−nr|Ψ‖ρmix

)
= sup

0≤s<1

−2s

1− s
r −H 1+s

2
(Ψ) + log dAdB.

(7)

The optimal two-way LOCC protocol: The optimal two-way LOCC protocol is the three-step LOCC

protocol having the following feature:

1. Alice’s first measurement is diagonal in the Schmidt basis of |Ψ〉.

2. Bob’s measurment is in the mutually unbiased basis of the Schmidt bais of the post-
measurement state of Alice’s first measurement.

3. Alice’s second measurement is chosen such that when the true state is |Ψ〉, Alice always gives
the correct answer.

Conclusion: In this paper, we have treated local asymptotic hypothesis testing between an arbi-
trary known bipartite pure state |Ψ〉 and the completely mixed state ρmix. Under the exponential
constraint for the type-1 error probability (the Hoeffding bound), there clearly exists a difference
between the optimal exponential decreasing rates of the type-2 error probabilities under one-way
and two-way LOCC POVMs. However, when we surpass the constraint for the type-1 error prob-
ability, this kind of difference is very subtle. That is, there exists a difference only in the third
order for the optimal exponential decreasing rates of the type-2 error probabilities under one-way
and two-way LOCC POVMs. From the beginning of the study of LOCC, many studies focused on
the effect by increasing the number of the communication round, as well as the difference between
two-way LOCC and separable operations. In this viewpoint, our study gives a very rare example
in which the optimal performance under the infinite-round two-way LOCC, which is different from
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the one under the one-way LOCC, can be attained with two-round communication, and is also
equal to the one under separable operations.
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