
When Does Nonlocality Distillation Outperform Entanglement
Concentration?

Jibran Rashid∗

School of Science and Engineering, Habib University, Pakistan

Dated: November 26, 2014

1 Motivation and Impact

Assuming access to only a few copies of a noisy entangled quantum state, we ask the question whether
an optimal entanglement concentration protocol also serves as an optimal nonlocality distillation protocol.
In the commonly considered framework for entanglement concentration, it is assumed that many identical
copies of a noisy entangled state are readily available. If the number of copies is large enough, multiple
copies of perfect Bell states can be obtained from the entanglement concentration protocol. As a conse-
quence, the issue of comparing the distillation rate of entanglement and nonlocality concentration protocols
does not come up. If the number of copies we have available are so small that not even a single perfect Bell
state can be deterministically obtained, then it is not known which of the two; entanglement or nonlocality
distillation, maximizes the CHSH [3] violation.

Much of the recent work on nonlocality distillation has focused on the box world framework [5], [1], [7], [6].
Nonlocality distillation for noisy entangled states on the other hand is a more practical scenario and con-
sidered initially under the notion of collective measurements by Peres [10] and improved upon by Liang
and Doherty [9]. It is not known whether the proposed protocols are optimal. We utilize the formulation
of nonlocality distillation as a semi-definite optimization problem based on Tsirelson’s vectorization [12]
to determine whether the optimal nonlocality distillation protocol is an optimal entanglement concentration
protocol. If the answer turns out to be negative then it would reinforce the notion that entanglement and
nonlocality are different resources [2]. If we have only a few copies of an entangled state in the lab then
considering which protocol to apply would depend on the task at hand.

The main difficulty we encounter is that the SDP obtained via Tsirelson’s vectorization is state independent.
We need to construct additional constraints, similar to the SDP for quantum nonlocal boxes [8], to obtain the
feasible region corresponding to the specific quantum state being considered. Given this new complexity,
why should we expect our SDP approach to work, when those employed previously [9] did not yield an
optimality proof? Given that we can construct the dual for our primal SDP allows us to numerically verify
whether an optimal solution has been obtained. This information can then be used to obtain an analytic
solution, similar to our earlier approach [8]. In addition, unlike the situation in the box world, the resulting
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SDP for shared entanglement encapsulates adaptive protocols as well. This is because while in the latter
case it is possible to initialize the players with n copies of an identical state and move the adaptive structure
of the protocol into the observables, the operation of the boxes in the former case cannot be captured by
local observables.

2 Framework

Consider Alice and Bob in their spatially separated labs, with only a few copies of noisy entangled states
between them. Let the states |ψ〉 and |φ〉 be the Bell states given by,

|ψ〉 = 1√
2
(|00〉+ |11〉) and |φ〉 = 1√

2
(|01〉+ |10〉) .

For the moment we consider nonlocality distillation for the mixed state ρ given by

ρ = p|ψ〉〈ψ|+ (1− p)|φ〉〈φ|.

For a single mixed state we define six vectors, one vector for each of Alice’s two observables A0 and A1,two
for Bob’s observable B0, and two vectors for Bob’s observable B1,

x0 = (A0 ⊗ 1)|ψ〉 y0 = (1⊗ B0)|ψ〉 z0 = (1⊗ B1)|ψ〉
x1 = (A1 ⊗ 1)|ψ〉 y1 = (1⊗ σxB0σx)|ψ〉 z1 = (1⊗ σxB1σx)|ψ〉.

Let G = [gij ] be the Gram Matrix of the six vectors {x0, x1, y0, y1, z0, z1},

G =



x0 · x0 x0 · x1 x0 · y0 x0 · y1 x0 · z0 x0 · z1
x1 · x0 x1 · x1 x1 · y0 x1 · y1 x1 · z0 x1 · z1
y0 · x0 y0 · x1 y0 · y0 y0 · y1 y0 · z0 y0 · z1
y1 · x0 y1 · x1 y1 · y0 y1 · y1 y1 · z0 y1 · z1
z0 · x0 z0 · x1 z0 · y0 z0 · y1 z0 · z0 z0 · z1
z1 · x0 z1 · x1 z1 · y0 z1 · y1 z1 · z0 z1 · z1

 ,

and set W to be the weight matrix

W =



0 0 p q p q
0 0 p q −p −q
p p 0 0 0 0
q q 0 0 0 0
p −p 0 0 0 0
q −q 0 0 0 0

 .

The simple but key distinction from the primal SDP for quantum nonlocal boxes is that we do not need to
flip the entries in matrix W corresponding to input 11 i.e., the entries with a minus sign. This results in
simpler solution matrices G. We may state the primal SDP as follows.

max
G

1

2
Tr(GW )

subject to G < 0

gii = 1 for all i ∈ {1, . . . , 6}
y|s| · z|t| = y|s′ | · z|t′ | if and only if s⊕ t = s′ ⊕ t′,

(1)
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Figure 1: Plot of primal solutions values for 1
2 6 p 6 1 and n = 1, 2. The expression for the curve is given

by 2
√
1 + (2p− 1)2

.

The inner product constraints for the single copy correspond to the requirement that y0 · z0 = y1 · z1 and
y0 · z1 = y1 · z0. These constraints are not sufficient to obtain a valid quantum solution. Using cvx to solve
the above primal results in the solution value V = 2

√
2, regardless of the noise value p we choose for the

quantum state. We need more constraints!

3 Work in Progress

At first glance it appears that we need to add perhaps more constraints of the same type as the existing
ones, i.e., equivalence between two entries in the G matrix. The new constraints however must apply to
the two entries in the matrix G that have been left unrestricted, i.e., y0 · y1 and z0 · z1. We can restrict
them using constraints such as Dieks inequality [4]. These however are quadratic inequalities and result in
a complicated dual. A simpler approach is to utilize the constraints derived by Popescu and Rohrlich [11] to
obtain y0 ·y1 = -z0 · z1. It appears that this constraint is sufficient in the sense that the cvx solutions obtained
using it match the optimal value we obtain by numerical optimization (Figure 1). Furthermore, such a linear
constraint does not lead to a complicated dual. We still need to work out how these constraints generalize as
we increase the number of copies.

3



References

[1] J. Allcock, N. Brunner, M. Pawłowski, and V. Scarani. Recovering part of the boundary between
quantum and nonquantum correlations from information causality. Physical Review A, 80:040103,
2009.

[2] N. Brunner, N. Gisin, and V. Scarani. Entanglement and nonlocality are different resources. New
Journal of Physics, 7:88, 2005.

[3] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed experiment to test local hidden–
variable theories. Physical Review Letters, 23:880, 1969.

[4] D. Dieks. Inequalities that test locality in quantum mechanics. Physical Review A, 66:062104, 2002.

[5] D. Dukaric and S. Wolf. A limit on nonlocality distillation. 2008.

[6] M. Forster. Bounds for nonlocality distillation protocols. Physical Review A, 83:062114, 2011.

[7] P. Høyer and J. Rashid. Optimal protocols for nonlocality distillation. Physical Review A, 82:042118,
2010.

[8] P. Høyer and J. Rashid. Quantum nonlocal boxes exhibit stronger distillability. P. Høyer and J. Rashid,
28(17):1330012, 2013.

[9] Y. Liang and A. C. Doherty. Better Bell-inequality violation by collective measurements. Physical
Review A, 73:052116, 2006.

[10] A. Peres. Collective tests for quantum nonlocality. Physical Review A, 54:4, 1996.

[11] S. Popescu and D. Rohrlich. Which states violate Bell’s inequality maximally? Physical Letters A,
169:411–414, 1992.

[12] S. Wehner. Tsirelson bounds for generalized Clauser–Horne–Shimony–Holt inequalities. Physical
Review A, 73:022110, 2006.

4


	Motivation and Impact
	Framework
	Work in Progress

