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Normalizer circuits [3, 4] are a family of quantum circuits which generalize Cli�ord circuits
[5�8] to Hilbert spaces associated with arbitrary �nite abelian groups G = Zd1 × · · · × Zdn .
Normalizer circuits are composed of normalizer gates. Important examples are quantum
Fourier transforms (QFTs), which play a central role in quantum algorithms, such as Shor's
[9]. Refs. [3, 4] showed that normalizer circuits of arbitrary size can be e�ciently classically

simulated, thereby serving as example-families of quantum computations that fail to harness
the power of QFTs to achieve achieve exponential quantum speed-ups.

In this work we generalize the normalizer circuit framework in two ways [1] [2] and
characterize the computational power of these generalizations. In summary our results are
as follows:

1. Normalizer circuits over in�nite groups [1]. We de�ne normalizer circuits where
the associated abelian group G can be in�nite. We focus on groups of the form Za×F , where
F is a �nite abelian group as above. The motivation for adding Z is that several number
theoretical problems are naturally connected to problems over the integers (cf. factoring
being related to the hidden subgroup over Z). We will show that all resulting normalizer
circuits can be simulated classically in polynomial time, thereby extending the classical
simulation results obtained in [3, 4].

2. Black box normalizer circuits [2]. This family extends the previous class by allowing
�nite abelian groups that are black box groups B (as introduced in [10]), i.e. we look at
groups of the form Za×F ×B. With this modi�cation, we will show that several important
quantum algorithms providing superpolynomial speed-ups�such as Shor's algorithms [9] and
other hidden subgroup problems�are in fact normalizer circuits. We thus obtain a precise
formal connection between this class of powerful quantum algorithms and the framework
of normalizer circuits. Furthermore we give a characterization of the power of black-box
normalizer circuits by providing a complete problem for this class.

In order to prove our simulability and hardness we develop several new techniques for
simulating and analyzing normalizer circuits, which provide (altogether) a generalization of
the celebrated stabilizer formalism [5�8, 11�16, 3, 4]. The most novel feature of our stabilizer
formalism over black-box groups, is that it allows us to describe famous quantum algorithms
such as Shor's and study exponential quantum speed-ups from a new perspective. In this
work we apply this precise connection between Cli�ord circuits and Shor's algorithm to draw
practical statements for quantum algorithm design.
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Previous Setting

We �rst review the setting in previous refs. [3, 4]. In these works one considers a �nite
Abelian group, given in the form Gold = Zd1 × · · · × Zdn , to which we associate a Hilbert
space H (the physical system) with a standard basis {|g〉} labeled by the elements of the
group g ∈ Gold. A unitary gate is a normalizer gate over Gold if it belongs to one of the
following categories:

- Gates that compute automorphisms of Gold;
- Gates that compute quadratic functions of Gold;
- The quantum Fourier transform over a cyclic subgroup Zdi of Gold.

A normalizer circuit over Gold is any quantum circuit composed of normalizer gates.

Our Setting

First, our aim is to extend the notion of normalizer circuits to in�nite groups of the form
G = Zm × Gold. To achieve such a construction we have to take mathematical features of
in�nite groups into consideration which complicate the treatment compared to �nite groups.
We deal here with the following issues:

1. In�nite dimensions. The physical system associated with G is now an in�nite dimen-
sional Hilbert space H = L2(G).

2. Adding the torus group T. As the group of characters of Zm is not isomorphic to
itself but to Tm (the m-dimensional torus group), the QFT over Z maps L2(Z) unitarily
onto a di�erent Hilbert space, i.e., L2(T). This is an important di�erence compared to �nite
abelian groups Gold, where the QFT maps H to itself. This phenomenon has important
consequences. In particular, in order to construct a closed normalizer formalism, we have
to consider groups of the form

Za × Tb ×Gold. (1)

Note that Tm is a continuous group.

Secondly, we consider normalizer circuits over black-box groups. Recall that every �nite
abelian group is isomorphic to a group of the form Gold. However, computing this decom-
position is in general computationally hard (this is e.g. the case for the multiplicative group
Z×
N [17]). Finite abelian groups for which such a direct product product decomposition

is a priori unknown are formalized by considering the notion of black-box groups. In this
work, a black-box group B is a �nite Abelian group whose elements have unique encodings1

and whose elements can be e�ciently multiplied/added (�e�ciently� here means �in classical
polynomial time� or, alternatively, �at unit cost by an oracle�, which is the black box). In
our work, a black box normalizer circuit is simply a normalizer circuit over a group G
which contains a black-box group B: in other words, the group G is of the form

Za × Tb ×Gold ×B. (2)
1Black box groups were introduced in [10] in a more general setting; in general, they neither have to be

Abelian nor uniquely encoded.
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Main Results

Classical simulability of normalizer circuits over Za × Tb ×Gold.

We show that normalizer circuits over such groups can be e�ciently simulated classically,
thereby generalizing the simulation results for normalizer circuits over �nite abelian groups
obtained in [3, 4].

For the simulation we develop new stabilizer formalism techniques. Our simulations di�er
from previous stabilizer simulations because they can handle continuous in�nite groups
G as well as continuous-in�nite stabilizer groups. In fact, the groups under consideration are
notoriously di�cult to handle: they are neither �nite, nor �nitely generated, nor countable;
they are not vector spaces and do not have bases; and they are not compact. The techniques
we develop to deal with these groups are as follows:

• Groups are described in terms of maps. We show that in�nite spaces with the above
properties can be e�ciently described as real maps acting on simple domains. We apply
this technique to store in�nitely-generated stabilizer groups that encode the evolution of
quantum systems. Previous work on stabilizer simulations, in contrast, relied on the fact
that generating sets of stabilizer groups could be e�ciently stored in their settings.

• Normal forms for quadratic functions and homomorphisms are developed and used to
�nd algorithms to track the dynamical evolution of a stabilizer group under the action of a
normalizer circuit, again, in terms of real maps.

• Sampling techniques. We develop methods to construct ε-nets within groups using Smith
normal forms and use these methods to devise an algorithm to simulate measurements at
the end of a normalizer circuit.

Black-box normalizer circuits can realize Shor's factoring algorithm.

In contrast to our classical simulation result for groups of the form Za × Tb × Gold, al-
lowing black-box groups in our setting dramatically changes the complexity of normalizer
circuits. We show that many of the best known quantum algorithms are particular instances
of normalizer circuits over black-box groups Za×Tb×Gold×B. This shows that normalizer
circuits over black box groups can o�er exponential quantum speed-ups and break widely
used public-key cryptographic systems. Namely, the following algorithms are examples of
black-box normalizer circuits (or have equivalent normalizer versions):

• Shor's algorithm for computing discrete logarithms [9]: G = Zp−1 × Z×
p ;

• Shor's factoring algorithm [9]: G = Z× Z×
N ;

• Simon's algorithm [18] and other oracular Abelian hidden subgroup problem algo-
rithms [19, 20], are normalizer circuits over groups of the form G×B, where G and B
are a group and a black-box group determined by the input of the HSP;
• Cheung-Mosca's algorithm for decomposing black-box �nite Abelian groups [21, 22]
is a combination of several types of black-box normalizer circuits.

Finally, we also show that the problem of decomposing black-box groups is complete for
the considered class: once an oracle to solve that problem (for example an implementation of
Cheung-Mosca's algorithm[21, 22]) is provided, our simulation techniques render normalizer
circuits simulable classically. This connection suggest that the computational power of these
circuits is encapsulated precise in the classical hardness of decomposing black-box groups.
This yields a no-go theorem for �nding new quantum algorithms within the class of black-
box normalizer circuits considered.
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