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1 Introduction

The standard oracle model is a powerful paradigm for understanding quantum computers. Tools
such as the adversary semidefinite program [10, 11], learning graphs [5, 6], and the polynomial
method [4] allow us to accurately characterize the quantum query complexity of many problems of
interest.

However, the oracle model does not capture the full power or challenges of quantum computing.
For example, problems such as k-SAT do not fit easily into the oracle model. Additionally, while
the query complexity of the hidden sub-group problem is known to be polynomial [9], for some
non-abelian groups there is no efficient algorithm.

In this paper, we describe a variation of the oracle model. We have access to two oracles, rather
than a single oracle1, but one oracle is more expensive to use. In the standard oracle model, the
objective is to evaluate a function using the oracle as few times as possible. In this new model,
which we call the Oracle Model with Costs, the goal is to evaluate a function in the cheapest way
possible.

To motivate this model, we consider the problem of k-SAT on n bits. We would like to find an
assignment x ∈ {0, 1}n such that all clauses are satisfied. Consider an algorithm for k-SAT that
runs two types of tests on a possible assignment x. The two tests are:

1. Check whether all clauses are satisfied.

2. Check whether some subset of the clauses are satisfied.

These two tests can be implemented as unitaries O1,O2 that act on the Hilbert space C2n⊗C2⊗Cd

(for some d ∈ Z+) in the following way:

Oi|x〉|y〉|0〉 = |x〉|y ⊕ fi(x)〉|0〉. (1)

Here fi(x) = 1 if assignment x passes Test i and fi(x) = 0 otherwise. Because Test 1 involves
checking all of the clauses, rather than some subset of the clauses, O1 will potentially take a longer
time to apply than O2.

This situation can easily be recast into an oracle problem, which we call Searching with Two
Oracles (STO). In STO, one is given two oracles, O1 and O2. O1 identifies the marked item, if it
exists, but is costly to use. O2 is inexpensive to use, but provides less information: it identifies some
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1The model can easily be extended to more than two oracles, but for simplicity, we limit ourselves to two.
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subset of items that will include the marked item, if it exists. An algorithm for STO that finds the
marked item while incurring the smallest cost can be applied to the problem of k-SAT, potentially
improving on naive approaches that rely only on O1.

Normally k-SAT is not thought of as an oracle problem, because the clauses contain more
information than can easily be incorporated into a single oracle. However, with multiple oracles,
the information in the clauses can be incorporated into different oracles. Introducing costs adds
further subtlety. We develop some tools for understanding the Oracle Model with Costs. We hope
this model will provide new insight into problems previously thought beyond the tools of query
algorithms.

This work falls broadly into the class of oracle problems with advice, in which access to a single
oracle is supplemented with some extra information that can come in the form of another oracle
or classical information, e.g. [12, 13]. Previous works [3, 12] have considered multiple oracles, but
not with costs. Furthermore, the additional advice oracles considered in these works tend to be
somewhat unnatural, and are tailored to the specific problems considered. The addition of costs
is related to work by Ambainis, in which he considered a single oracle that has different costs for
querying different items [2].

2 Results

We use the problem of STO as a test-bed for tools and ideas that can hopefully be applied to more
complex problems. More formally, we give the definition of STO:

Definition 1 (Search with Two Oracles (STO)). Let N and M be known positive integers and let
S ⊆ {0, · · · , N−1} be an unknown set. There might or might not exist a special item i∗. If i∗ exists,
then one is promised that i∗ ∈ S and |S| = M . If i∗ doesn’t exist, the size of S is arbitrary. Let O∗
and OS be two unitaries acting on the standard basis states |i〉 for i ∈ {0, · · · , N − 1} as follows:

O∗|i〉 =

{
−|i〉 if i = i∗

|i〉 if i 6= i∗ or i∗ doesn’t exist.
OS |i〉 =

{
−|i〉 if i ∈ S
|i〉 if i /∈ S.

(2)

Given oracle access to O∗ and OS , (where for simplicity the oracles can not be used in super-
position), one must determine with bounded error the value of i∗, or determine that i∗ does not
exist.

Let O∗ have cost c∗ and OS have cost cS . Among algorithms that solve STO, we want to find
the algorithm that has the smallest cost, where if q∗ is the number of times O∗ is used, and qS is
the number of times OS is used, the cost of an algorithm is

c∗q∗ + cSqS . (3)

Two classical deterministic algorithms for STO are

1. Classical Algorithm 1 (CA1): Query each element with O∗, to test whether the element is
marked. This has cost c∗N .

2. Classical Algorithm 2 (CA2): Query each element with OS . This will identify all elements of
S. Then test the elements of S with O∗ to determine whether any of the elements of S are
marked. This has cost cSN + c∗M .
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It can be shown that the optimal deterministic algorithm is either CA1 or CA2; thus for a deter-
ministic classical computer the cost is exactly

min
(
cSN + c∗M, c∗N

)
. (4)

We can quantize CA1 and CA2 using amplitude amplification [7]. The quantized versions of CA1
and CA2 have costs O

(
c∗
√
N
)
and O

(
cS
√
N + c∗

√
M
)
respectively, giving a quantum algorithm

with cost

O
(

min
(
cS
√
N + c∗

√
M, c∗

√
N
))

. (5)

In the classical case, the optimal algorithm is always CA1 or CA2. One might guess that in the
quantum case, the optimal algorithm is always one of the two quantized versions of these classical
algorithms. However, we construct a quantum algorithm that achieves lower query cost than the
simple quantized versions of these classical algorithms. The quantum problem thus has a richer
structure than that of the corresponding classical problem.

Additionally, we prove lower bounds on the cost of STO. By integrating multiple oracles into
the framework of the adversary method [1, 14] we show that the bound of Eq. 5 is asymptotically
tight, i.e. the cost of STO is

Θ
(

min
(
cS
√
N + c∗

√
M, c∗

√
N
))

. (6)

We were furthermore curious whether our algorithm is exactly optimal. By exactly optimal, we
mean that the upper and lower bounds on the cost are equal, not just asymptotically tight up to
a multiplicative constant. Grover’s algorithm is known to be exactly optimal [15]. Our algorithm
is a 2-level nesting of Grover’s algorithm, i.e. we perform amplitude amplification on an algorithm
that is itself a Grover search algorithm. If we can prove exact optimality of our algorithm, it would
provide strong evidence that extensions of Grover’s algorithm, like amplitude amplification, are also
exactly optimal.

The adversarial lower bounds we prove are insufficient to show our algorithm is exactly optimal
(even when we include ideas from exact Grover lower bounds [8]). However, we do give some
evidence that our algorithm is indeed exactly optimal. In particular, we consider algorithms in
which we cannot perform arbitrary operations, but instead are limited to the unitaries O∗, OS , and
G, where

G = 2|ψ〉〈ψ| − I (7)

for |ψ〉 = 1√
N

∑N−1
i=0 |i〉. When limited to these three unitaries (and given no ancilla qubits), we

prove that our algorithm is exactly optimal in terms of cost (up to a multiplicative factor that is
asymptotically 1). Our proof uses ideas from both adversary methods (we create a non-standard
progress function) and the geometric picture of Grover’s algorithm. It is an open question whether
these techniques could be combined with more standard lower-bounding methods to extend our
result to allow arbitrary operations.
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