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Two orthonormal bases A = {|ai〉, i = 1, . . . , d} and B = {|bj〉, j = 1, . . . , d} of a d-dimensional
Hilbert space Cd are said to be mutually unbiased if for all basis vectors |ai〉 ∈ A and |bj〉 ∈ B,

|〈ai|bj〉| =
1√
d
,∀i, j = 1, . . . , d.

In other words, if a physical system is prepared in an eigenstate of basis A and measured in
basis B, all outcomes are equally probable. A set of orthonormal bases {B1,B2, . . . ,Bm} in Cd is
called a set of mutually unbiased bases (MUBs) if every pair of bases in the set is mutually unbiased.

MUBs form a minimal and optimal set of orthogonal measurements for quantum state tomog-
raphy [1, 2]. Such bases play an important role in our understanding of complementarity in
quantum mechanics [3] and are central to quantum information tasks such as entanglement
detection [4], information locking [5], and quantum cryptography [6, 7]. MUBs correspond to
measurement bases that are most ‘incompatible’, as quantified by uncertainty relations [8] and
other incompatibility measures [9, 10], and, the security of quantum cryptographic tasks relies on
this property of MUBs. In particular, protocols based on higher-dimensional quantum systems
with larger numbers of unbiased basis sets can have certain advantages over those based on
qubits [11, 12]. It is therefore important for cryptographic applications to identify sets of MUBs
in higher-dimensional systems that satisfy strong uncertainty relations.

The maximum number of MUBs that can exist in a d-dimensional Hilbert space is d + 1 and
explicit constructions of such complete sets are known when d is a prime power [2, 13, 14].
One such construction is based on forming mutually disjoint maximal commuting classes from a
unitary operator basis. Specifically, consider a set U of d2 unitary operators that forms a basis
for the space of d × d complex matrices. If there exist subsets {C1, C2, . . . , CL|Cj ⊂ U \ {I}} of
size |Cj | = d − 1 such that, (a) the elements of Cj commute for all 1 ≤ j ≤ L and (b) Cj ∩ Ck = ∅
for all j 6= k, then, it was shown in [13] that the common eigenbases of L such disjoint maximal
commuting classes form a set of L mutually unbiased bases.

When the unitary basis is comprised of the generalized Pauli operators, this approach provides a
construction of a complete set of d+ 1 MUBs in prime-power dimensions (d = pn). In terms of the
computational basis {|j〉, j = 1, . . . , p}, the generalized Pauli operators Xp,Zp (also the generators
of the Weyl-Hiesenberg group) in p-dimensions are given by

Xp|j〉 = |(j + 1)mod p〉; Zp|j〉 = ei2πj/p|j〉.

Now, let Up,n be the set of unitaries in dimension d = pn that are generated as n-fold tensor
products of products of Xp and Zp. Then, it was shown that the set Up,n/{I} can always be
partitioned into such a set of d + 1 maximal commuting classes in d = pn dimensions, their
common eigenbases forming a complete set of d+ 1 MUBs [13].

However, in non-prime-power dimensions, the question of whether a complete set of MUBs exists
remains unresolved. Related to the question of finding complete sets of MUBs is the important
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concept of unextendible sets of MUBs. A set of MUBs {B1,B2, . . . ,Bm} in Cd is said to be
unextendible if there does not exist another basis in Cd that is unbiased with respect to all
the bases Bj , j = 1, . . . ,m. Examples of such unextendible sets are known in the literature. In
dimension d = 6, the three eigenbases of X6,Z6 and X6Z6 were shown to be an unextendible
set of MUBs [15]. This has the important consequence that the eigenbases of Weyl-Hiesenberg
generators will not lead to a complete set of 7 MUBs in d = 6. In fact, several distinct
families of unextendible triplets of MUBs have been constructed in d = 6 [16–18]. Moving away
from six dimensions, the set of three MUBs obtained in d = 4 using Mutually Orthogonal Latin
Squares (MOLS) [19] is an example of an unextendible set of MUBs in prime-power dimensions [20].

More recently, a systematic construction of such smaller sets that are unextendible to a complete
set was obtained for two- and three-qubit systems [21]. Specifically, it was shown that there exist
smaller sets of k = d

2 + 1 commuting classes {C1, C2, . . . , Ck} in d = 2n that are unextendible in
the following sense—no more maximal commuting classes can be formed out of the remaining
n-qubit Pauli operators that are not contained in C1 ∪ C2 . . . ∪ Ck. The eigenbases of {C1, . . . , Ck}
thus constitute a weakly unextendible set of k MUBs which cannot be extended to a complete
set of d + 1 MUBs using Pauli classes. While an explicit construction of such unextendible
classes was provided for d = 4, 8, their existence was conjectured for d = 2n(n > 3). This
conjecture has been further improved upon [22] using a correspondence between unextendible sets
of MUBs and maximal partial spreads of the polar space formed by the n-qubit Pauli operators [23].

Here, we show the existence of weakly unextendible sets of MUBs in prime-squared dimensions
d = p2, where p is prime. Each basis is realized as the common eigenbasis of a maximal commuting
class of tensor products of the generalized Pauli operators. While the existence of unextendible sets
of classes in d = p2 has been shown recently using the geometry of symplectic polar spaces [22], we
provide an algebraic construction which makes it easier to visualize the corresponding bases. Our
construction also brings to light an interesting connection between the existence of unextendible
sets and the tightness of entropic lower bounds in these dimensions. In particular, we identify sets
of p+ 1 MUBs that saturate both a Shannon and a collision EUR in d = p2. We merely state our
results here and refer to the technical supplement [28] for further details and proofs.

First Result: [Unextendible sets of p2 − p+ 2 classes in d = p2 for p ≥ 3]
Given Up,2, the set of unitaries in d = p2 generated by Xp and Zp, we provide an explicit construction
of unextendible sets of N(p) = p2 − p+ 2 classes for p ≥ 3. For the case of p ≥ 3, our construction
crucially relies on the following fact: there exist a set of p+1 classes that are a part of the complete
set of p2 + 1 classes out of which, exactly 2 more maximal commuting classes can be formed.
Therefore, these two new classes along with the remaining p2 − p classes form an unextendible set
of N(p) classes.
Example in p = 3, d = 9: Consider the following four maximal commuting classes which are part
of a complete set of ten classes – {C1, C2, . . . , C10} – in d = 32:

C1 =
〈
I3 ⊗X3Z2

3 , X3Z3 ⊗ I3
〉

C2 =
〈
Z3 ⊗X3Z2

3 , X3 ⊗X3

〉
C5 =

〈
Z3 ⊗X 2

3Z3, X3 ⊗X 2
3

〉
C7 = 〈 I3 ⊗X3Z3, Z3 ⊗ I3 〉

Note that we describe each class Ci in terms of their generators – the remaining operators in
the class are simply realized as higher powers and products of these [29]. From the elements of
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C1, C2, C3, C4, we can form exactly two more classes:

CI =
〈
I ⊗ X3Z2

3 , Z3 ⊗X3Z2
3

〉
CII =

〈
X3Z3 ⊗ I, X3Z3 ⊗X 2

3Z2
3

〉
CI , CII contain exactly two elements from each of the four classes. Since no more maximal commuting

classes can be formed using the elements of C1, C2, C3, C4, the new classes CI , CII along with the remaining
classes {C5, C6, . . . , C10} constitute an unextendible set of 8 classes in d = 32 dimensions. The common
eigenbasis of such an unextendible set of maximal commuting classes form a weakly unextendible set of 8
MUBs in a nine dimensional space.

Second Result: [Tightness of Shannon and H2 EURs in d = p2]
We further show that the existence of unextendible classes implies the tightness of an entropic uncertainty
relation (EUR) for the Rényi entropy of order 2 - H2 (also known as the collision entropy [30]) in prime-
squared dimensions. In particular, given a set of p + 1 classes such that one more class CI can be formed
using the operators in the set, their common eigenbases {B1,B2, . . . ,Bp+1} satisfy,

1

p+ 1
inf

|ψ〉∈Cp2

[
p+1∑
i=1

H2(Bi||ψ〉)

]
= log p =

1

2
log d . (1)

Equality is attained for common eigenstates of the new class CI . In other words, if the set of p + 1 classes
corresponding to a given set of p + 1 MUBs are such that they give rise to an unextendible set of classes,
then, the set of MUBs saturates the well known H2 EUR [8]. The minimum uncertainty is attained for
states that ”look alike” with respect to each of the p+1 MUBs [24]. Our result generalizes an earlier
observation that the H2 EUR is tight for sets of 3 MUBs in d = 4 dimensions [21]. It further shows that the
connection between the existence of unextendible classes and the tightness of this EUR which was earlier
observed for only d = 22 holds for any prime-squared dimensions.

Finally, we also note that such a set of p+ 1 classes – out of whose elements one more maximal commuting
class can be formed – also leads to a tight Shannon EUR for the corresponding MUBs. In other words,
B1,B2, . . . ,Bp+1 satisfy,

1

p+ 1
inf

|ψ〉∈Cp2

[
p+1∑
i=1

H2(Bi||ψ〉)

]
= log p =

1

2
log d . (2)

Equality is again achieved by common eigenstates of the new class formed by picking a pair of elements from
each of the p + 1 classes. Note that this lower bound on the average Shannon entropy is in fact a trivial
consequence of the Maassen-Uffink bound [25] for a pair of bases. It has been noted earlier that there exist
sets of upto p + 1 MUBs in prime-squared dimensions constructed using the generalized Pauli operators
that saturate the lower bound [26] in Eq (2). However, the question of identifying such a set of MUBs that
satisfy a trivial Shannon EUR remains unresolved [8]. Here, we make some progress towards answering this
question.
Applications: Two simple corollaries follow from the tightness of the Shannon EUR. The fact that the
set of p + 1 MUBs satisfies a weak lower bound implies that such a set of MUBs cannot give a better
locking result than just using a pair of MUBs [5]. On the other hand, such MUBs can be used to witness

entanglement in d ⊗ d systems [27]. If a state |ψ〉 ∈ Cp2 ⊗ Cp2 violates the Shannon EUR lower bound in
Eq. (2), then, it must be entangled. However, this is not a necessary condition for the state to be entangled:
there could exist entangled state that satisfy the EUR bound.
Conclusions: We show by explicit construction the existence of unextendible sets of N(p) = p2−p+2 MUBs
in prime squared (d = p2) dimensions for p ≥ 3. Our construction is based on grouping the generalized
Pauli operators in these dimensions into sets of mutually disjoint, maximal commuting classes that are
unextendible to a complete set of (d+ 1) classes. We further demonstrate a general connection between the
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existence of unextendible sets and the tightness of an entropic uncertainty relation.
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