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Our Results
Relative entropy is a widely used quantity of central importance in both classical and quantum
information theory. In this paper we present a new operational meaning to quantum relative
entropy in the form of the following protocol.

P: Alice gets to know the eigen-decomposition of a quantum state ρ. Bob gets to know the eigen-
decomposition of a quantum state σ. Both Alice and Bob know S(ρ‖σ) def= Trρ log ρ − ρ log σ,
the relative entropy between ρ and σ and an error parameter ε. Alice and Bob use shared
entanglement and after communication of O((S(ρ‖σ) + 1)/ε4) bits from Alice to Bob, with
probability at least 1− 4ε, Bob ends up with a quantum state ρ̃ such that F(ρ, ρ̃) ≥ 1− ε, where
F(·) represents fidelity.

This result can be considered as a non-commutative generalization of a result due to Braver-
man and Rao [BR11] where they considered the special case when ρ and σ are classical probability
distributions.

We also present a variant of protocol P, with Bob possessing some side information about
Alice’s input. In such a case, the communication can be further reduced.

P′: Alice and Bob know the description of a quantum channel E : A → A′. Alice is given the
spectral decomposition of a state ρ ∈ A. Bob is given the spectral decompositions of a state
σ ∈ A and the state ρ′ = E(ρ). Let S(ρ‖σ) − S(E(ρ)‖E(σ)) and ε > 0 be known to Alice and
Bob. There exists a protocol, in which Alice and Bob use shared entanglement and Alice sends
O((S(ρ‖σ)− S(E(ρ)‖E(σ)) + 1)/ε4) bits of communication to Bob, such that with probability
at least 1− 4ε, the state ρ̃ that Bob gets at the end of the protocol satisfies F(ρ, ρ̃) ≥ 1− ε .

Our second result provides a new operational meaning to trace distance between quantum
states in the form of the following protocol.

P1 : Alice gets to know the eigen-decomposition of a quantum state ρ. Bob gets to know the
eigen-decomposition of a quantum state σ. Alice and Bob use shared entanglement, do local
measurements (no communication) and at the end Alice outputs registers AA1 and Bob outputs
registers BB1 such that the following holds:

1. The marginal state in A is ρ and the marginal state in B is σ.

2. For any projective measurement M = {M1, . . . ,Mw} in the support of the state in AA1,
the following holds. Let Alice perform M on AA1 and Bob perform M on BB1 and obtain
outcome I ∈ [w], J ∈ [w] respectively. Then,

Pr[I = J ] ≥
(

1−
√
‖ρ− σ‖1 −

1
4 ‖ρ− σ‖

2
1

)3

.

The protocol above can be viewed as a quantum analogue of the classical correlated-sampling
protocol, which is widely used for example by Holenstein [Hol07] in his proof of a parallel-
repetition theorem for two-player one-round games. Recently Dinur, Steurer and Vidick [DSV14]
have shown another version of a quantum correlated sampling protocol different from ours,
and used it in their proof of a parallel-repetition theorem for two-prover one-round entangled
projection games.
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Our techniques

Approach for Protocol P

Our protocol P is inspired by the protocol of Braverman and Rao [BR11], which as we mentioned,
applies to the special case when inputs to Alice and Bob are classical probability distributions
P,Q respectively.

In our protocol, Alice and Bob share infinite copies of the following quantum state

|ψ〉 def= 1√
NK

N∑
i=1
|i〉A |i〉B ⊗

(
K∑
m=1
|m〉A1 |m〉B1

)
,

where registers A,B serve to sample a maximally mixed state in the support of ρ, σ and the
registers A1, B1 serve to sample uniformly in the interval [0, 1] (in the limit K → ∞). Let us
assume the simpler case first when Alice and Bob know c = S∞(ρ‖σ) def= min{λ| ρ ≤ 2λσ} (here
≤ represent the Löwner order), the relative min-entropy between ρ and σ. Let ρ =

∑
i ai |ai〉 〈ai|

and σ =
∑
i bi |bi〉 〈bi|. Alice performs the following projection on registers AA1 on each copy of

|ψ〉 and accepts the index of a copy iff the projection succeeds.

PA =
∑
i

|ai〉 〈ai| ⊗

Kai∑
m=1
|m〉 〈m|

 .
Similarly Bob performs the following projection (for appropriately chosen δ) on registers BB1
on each copy of |ψ〉 and accepts the index of a copy iff the projection succeeds.

PB =
∑
i

|bi〉 〈bi| ⊗

K·min{2cbi/δ,1}∑
m=1

|m〉 〈m|

 .
It is easily argued that (in the limit K → ∞), the marginal state in B (and also in A) in the
first copy of |ψ〉, with index i, in which Alice succeeds is ρ. Using crucially the fact that ρ ≤ 2cσ,
we argue that after Alice’s measurement succeeds in a copy, Bob’s measurement also succeeds
with high probability and hence (by the gentle measurement lemma) does not disturb the state
much in the register B, conditioned on success. We also argue that Alice can communicate the
index of this copy to Bob with communication of O(c) bits (for constant ε).

As can be seen, our protocol is a natural quantum analogue of the protocol of Braverman and
Rao [BR11]. However, since ρ and σ may not commute, our analysis deviates significantly from
the analysis of [BR11]. We are required to show several new facts related to the non-commuting
case while arguing that the protocol still works fine.

We then consider the case in which S(ρ‖σ) (instead of S∞(ρ‖σ)) is known to Alice and Bob.
The quantum substate theorem [JRS09, JRS02, JN12] implies that there exists a quantum state
ρ′, having high fidelity with ρ such that S∞(ρ′‖σ) = O(S(ρ‖σ)). We argue that our protocol is
robust with respect to small perturbations in Alice’s input and hence works well for the pair
(ρ, σ) as well, and uses communication O(S(ρ‖σ)) bits. Again this requires us to show new facts
related to the non-commuting case.

Approach for Protocol P1

For the Protocol P1, Alice and Bob use similar approach as followed in P. They share infinite
copies of the following quantum state

|ψ〉 def= 1√
NK

N∑
i=1
|i〉A |i〉B ⊗

(
K∑
m=1
|m〉A1 |m〉B1

)
,
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.
Let ρ =

∑
i ai |ai〉 〈ai| and σ =

∑
i bi |bi〉. Alice performs the following projection on registers

AA1 on each copy of |ψ〉 and outputs the first copy where the projection succeeds.

PA =
∑
i

|ai〉 〈ai| ⊗

Kai∑
m=1
|m〉 〈m|

 .
Similarly Bob performs the following projection (for appropriately chosen δ) on registers BB1
on each copy of |ψ〉 and outputs the first copy where the projection succeeds.

PB =
∑
i

|bi〉 〈bi| ⊗

Kbi∑
m=1
|m〉 〈m|

 .
We show that the resulting state that Alice and Bob output together is well correlated

between them. To give an intuitive picture, when ρ and σ are equal, then Alice and Bob succeed
on same index and their output state is maximally entangled within the relevant subspace.

Implications
The protocol of Braverman and Rao [BR11], and slightly modified versions of it, were widely
used to show several direct sum and direct product results in communication complexity, for
example a direct sum theorem for all relations in the bounded-round public-coin communication
model [BR11], direct product theorems for all relations in the public-coin one-way and public-coin
bounded-round communication models [Jai13, JPY12, BRWY13].

Protocol P allows for compressing the communication in one-way entanglement-assisted
quantum communication protocols to the internal information about the inputs carried by the
message. Using this we obtain a direct-sum result for entanglement assisted quantum one-way
communication complexity for all relations. This direct-sum result was shown previously by Jain,
Radhakrishnan and Sen [JRS05, JRS08] and they obtained this result via a protocol that allowed
them compression to external information carried in the message1. Their arguments were quite
specific to one-way protocols and did not seem to generalize to multi-round communication
protocols. Our proof however, is along the lines of a proof which has been generalized to
bounded-round classical protocols [BR11] and hence it presents hope that our direct-sum result
can also be generalized to bounded-round quantum protocols. The protocol of Braverman and
Rao [BR11] was also used by Jain [Jai13] to obtain a direct-product for all relations in the model
of one-way public-coin classical communication and later extended to multiple round public-coin
classical communication [JPY12, BRWY13]. Hence protocol P also presents a hope of obtaining
similar results for quantum communication protocols.

As mentioned before the classical correlated-sampling protocol has been widely used for
example by Holenstein [Hol07] in his proof of a parallel-repetition theorem for two-player one-
round games. It is possible that the protocol P1, which is the corresponding quantum analogue,
finds similar uses, for example in showing a parallel repetition result for entangled two-player
one-round games, which remains an important open question.

1Compression to external and internal information can be thought of as one-shot communication analogues of
the celebrated results by Shannon [Sha48] and Slepian-Wolf [SW73] exhibiting compression of source to entropy
and conditional entropy respectively.
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