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Introduction. The conditional quantum mutual information (CQMI) is a central information quantity that
finds numerous applications in quantum information theory [6, 16], the theory of quantum correlations
[11, 5], and quantum many-body physics [10, 1]. For a quantum state ρABC shared between three parties,
say, Alice, Bob, and Charlie, the CQMI is defined as

I(A; B|C)ρ ≡ H(AC)ρ + H(BC)ρ −H(C)ρ −H(ABC)ρ, (1)

where H(F)σ ≡ −Tr{σF log σF} is the von Neumann entropy of a state σF on system F and we unambigu-
ously let ρC ≡ TrAB{ρABC} denote the reduced density operator on system C, for example. The CQMI
captures the correlations present between Alice and Bob from the perspective of Charlie in the indepen-
dent and identically distributed (i.i.d.) resource limit, where an asymptotically large number of copies of
the state ρABC are shared between the three parties.

In an attempt to develop a version of the CQMI, which would be relevant for the “one-shot” or finite
resource regimes, we along with Berta [3] recently proposed Rényi generalizations of the CQMI. We
proved that these Rényi generalizations of the CQMI retain many of the properties of the original CQMI
in (1). We used them to define a Rényi squashed entanglement and a Rényi quantum discord [12], which
retain several properties of the respective, original, von Neumann entropy-based quantities.

One contribution of [3] was the conjecture that the proposed Rényi CQMIs are monotone increasing
in the Rényi parameter, as is known to be the case for other Rényi entropic quantities. That is, for a
tripartite state ρABC, and for a Rényi conditional mutual information Ĩα (A; B|C)ρ defined as [3, Section 6]
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1
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[3, Section 8] conjectured that the following inequality holds for 0 ≤ α ≤ β:

Ĩα (A; B|C)ρ ≤ Ĩβ (A; B|C)ρ . (3)

Proofs were given for this conjectured inequality when the Rényi parameter α is in a neighborhood of one
and when 1/α+ 1/β = 2 [3, Section 8]. We also pointed out implications of the conjectured inequality for
understanding states with small conditional quantum mutual information [3, Section 8] (later stressed in
[2]). In particular, we pointed out that the following lower bound on the conditional quantum mutual
information holds as a consequence of the conjectured inequality in (3) by choosing α = 1/2 and β = 1:

I (A; B|C)ρ ≥ − log F
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ρABC,R
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(
ρBC

))
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where RP
C→AC is a quantum channel known as the Petz recovery map [8], defined as

R
P
C→AC(·) ≡ ρ1/2

ACρ
−1/2
C (·)ρ−1/2

C ρ1/2
AC . (6)
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The fidelity is a measure of how close two quantum states are and is defined for positive semidefinite
operators P and Q as

F (P,Q) ≡
∥∥∥∥√P

√
Q
∥∥∥∥2

1
. (7)

The trace distance bound in (4) was conjectured previously in [9] and a related conjecture (with a different
lower bound) was considered in [15].

The conjectured inequality in (4) revealed that (if it is true) it would be possible to understand
tripartite states with small conditional mutual information in the following sense: If one loses system A
of a tripartite state ρAC and is allowed to perform the Petz recovery map on system C alone, then the fidelity of
recovery in doing so will be high. The converse statement was already established in [3, Proposition 35]
and independently in [7, Eq. (8)]. Indeed, suppose now that a tripartite state ρABC has large conditional
mutual information. Then if one loses system A and attempts to recover it by acting on system C alone,
then the fidelity of recovery will not be high no matter what scheme is employed (see [3, Proposition 35]
for specific parameters). These statements are already known to be true for a classical system C, but the
main question is whether the inequality in (4) holds for a quantum system C.

Summary of results. In [13], we observe that the RHS of the conjectured inequality in (4) can be lower
bounded in terms of a quantity that we call the surprisal of the fidelity of recovery:

− log F
(
ρABC,R

P
C→AC

(
ρBC

))
≥ IF (A; B|C)ρ ≡ − log F (A; B|C)ρ , (8)

where the fidelity of recovery is defined as

F (A; B|C)ρ ≡ sup
R

F
(
ρABC,RC→AC

(
ρBC

))
. (9)

That is, rather than considering the particular Petz recovery map, one could consider optimizing the
fidelity with respect to all such recovery maps.1 We show that the surprisal of the fidelity of recovery
F (A; B|C)ρ obeys many of the same properties as the conditional mutual information I (A; B|C)ρ. For
example, it is non-negative, it is monotone under quantum operations on systems A and B in the sense
that

IF (A; B|C)ρ ≥ IF (A′; B′|C)ω , (10)

where ωABC ≡ (NA→A′ ⊗MB→B′)
(
ρABC

)
andNA→A′ andMB→B′ are quantum channels acting on systems

A and B, respectively, and it obeys a duality relation given by

IF (A; B|C)ψ = IF (A; B|D)ψ . (11)

We also show that it obeys a dimension bound given by

IF (A; B|C)ψ ≤ 2 log |A| , (12)

where |A| is the dimension of the system A, and obeys a ”weak” chain rule:

IF (AC; B|D)ρ ≥ IF (A; B|CD)ρ . (13)

Our other contribution in [13] is to define an entanglement measure of a bipartite state based on
IF (A; B|C)ρ of (8), which we call the geometric squashed entanglement. (The quantity can be easily extended
to the multipartite case.) To motivate this quantity, recall that the squashed entanglement of a bipartite
state ρAB is defined as

Esq (A; B)ρ ≡
1
2

inf
ωABE

{
I (A; B|E)ω : ρAB = TrE {ωABE}

}
, (14)

1Note: After the completion of this work, we learned of the recent breakthrough result of [7], in which the inequality
I(A; B|C)ρ ≥ − log F(A; B|C)ρ was established for any tripartite state ρABC ∈ S(HA ⊗ HB ⊗ HC). Thus, for states with small
conditional mutual information (near to zero), the fidelity of recovery is high (near to one).
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where the infimum is over all extensions ωABE of the state ρAB [5]. The interpretation of Esq (A; B)ρ is
that it quantifies the correlations present between Alice and Bob after a third party (often associated to
an environment or eavesdropper) attempts to “squash down” their correlations. In light of the above
discussion, we define the geometric squashed entanglement simply by replacing the conditional mutual
information with IF:

Esq
F (A; B)ρ ≡

1
2

inf
ωABE

{
IF (A; B|E)ω : ρAB = TrE {ωABE}

}
. (15)

We also employ the related quantity throughout the paper:

Fsq (A; B)ρ ≡ sup
ωABE

{
F (A; B|E)ρ : ρAB = TrE {ωABE}

}
, (16)

with the two of them being related by

Esq
F (A; B)ρ = −

1
2

log Fsq (A; B)ρ . (17)

We prove the following results for the geometric squashed entanglement, justifying it as an entangle-
ment measure in its own right:

1. (Entanglement Monotone) The geometric squashed entanglement of ρAB does not increase under
local operations and classical communication. That is, the following inequality holds

Esq
F (A; B)ρ ≥ Esq

F (A′; B′)ω , (18)

where ωAB ≡ ΛAB→A′B′
(
ρAB

)
and ΛAB→A′B′ is a quantum channel realized by local operations and

classical communication. The geometric squashed entanglement is also convex, i.e.,∑
x

pX (x) Esq
F (A; B)ρx ≥ Esq

F (A; B)ρ , where ρAB ≡
∑

x
pX (x)ρx

AB. (19)

2. (Faithfulness) The geometric squashed entanglement of ρAB is equal to zero if and only if ρAB is a
separable (unentangled) state. In particular, we prove the following bound by appealing directly
to the argument in [15]:

Esq
F (A; B)ρ ≥

1

512 |A|4
∥∥∥ρAB − SEP(A : B)

∥∥∥4
1 , (20)

where the trace distance to separable states is defined by∥∥∥ρAB − SEP(A : B)
∥∥∥

1 ≡ min
σAB∈SEP(A:B)

∥∥∥ρAB − σAB
∥∥∥

1 . (21)

3. (Reduction to geometric measure) The geometric squashed entanglement of a pure state
∣∣∣φ〉

AB
reduces to a variant of the well known geometric measure of entanglement [14] (see also [4] and
references therein):

Esq
F (A; B)ψ = −

1
2

log max
|ϕ〉A

〈
φ
∣∣∣
AB

(
ϕA ⊗ φB

) ∣∣∣φ〉
AB

(22)

4. (Normalization) The geometric squashed entanglement of a maximally entangled state ΦAB is equal
to log d, where d is the Schmidt rank of ΦAB.

5. (Subadditivity) The geometric squashed entanglement is subadditive for tensor-product states,
i.e.,

Esq
F (A1A2; B1B2)ω ≤ Esq

F (A1; B1)ρ + Esq
F (A2; B2)σ , (23)

where ωA1B1A2B2 ≡ ρA1B1 ⊗ σA2B2 .

6. (Continuity) If two quantum states ρAB and σAB are close in trace distance, then their respective
geometric squashed entanglements are close as well.
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