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One of the most distinctive features of quantum mechanics is collapse of the wave function due
to measurement. This phenomenon puts restrictions on the types of measurements that can be
performed on the same state of a particle. Weak measurements, first introduced by Y.Aharonov
et al [1], is a measurement procedure in which it is possible to measure the average value of
an ensemble of particles, all prepared in the same initial state, with minimal disturbance to the
individual particles. Hence, it is possible to measure the average value of a variable ‘weakly’
and then perform a subsequent measurement on the undisturbed state.

There are two ways in which a measurement can be made weak; firstly, each measurement
device can be coupled very weakly to each particle, alternatively, the uncertainty in the initial
momentum of each measurement device can be required to be very small. In both these limits
the disturbance to each particle, caused due to measurement, is very small. However in these
limits, the information acquired from each measurement is also very small. Therefore, this
measurement must be carried out on a large number of particles, each prepared in the same
initial state, to calculate the average value of a variable A. The average value can be calculated
with arbitrary accuracy as the number of particles becomes arbitrarily large.

After the particles in the ensemble are weakly measured, a second measurement of variable
B can be performed on the particles (which are still approximately in the same initial state). The
second measurement is a projective measurement and hence collapses the state of each particle
into an eigenstate of B. One can now select a particular subset of the particles which have all
collapsed to a specific eigenstate |b〉. For these states, we know the value of the B, and we can
also calculate the average shift in the measurement devices used to ‘weakly’ measure A. When
a weak measurement is followed by this kind of post selection, then the average shift in the
measurement devices is proportional to the real and imaginary parts of a quantity known as the
weak value [4].

Since its conception, weak values have been the topic of much debate, owing to the fact
that it seeks to analyse the property of particles between two measurements, a situation pre-
viously considered counterfactual in quantum mechanics. It is thus useful to study the weak
measurement protocol classically, to home in on which effects are quantum and which can be
reproduced classically. The aim is to better understand the statistical effects of post selection
and to shed light on measurement disturbance. We analyse weak values within epistemically
restricted Liouville (ERL) mechanics [2], which has a classical ontology and where particles
evolve under classical dynamics. It is particularly useful model to use as it is operationally
equivalent to gaussian quantum mechanics.

We first show how we can recover the same information-disturbance tradeoff using the epis-
temically restricted gaussian phase space distributions evolving under classical dynamics. We
demonstrate how each of the two limits manifests classically. We show that despite having the
same general effect of ‘weakening’ the measurement, the reason for weakness in each of the
limits is different classically. In the limit of the small coupling the weakness is due to each
measurement device interacting weakly with each particle, whereas in the limit of a small un-
certainty in the momentum of the device, the interaction between each measurement device
and particle is strong, however, the large uncertainty in our information of each measurement
is what makes the measurement ‘weak’. We find that this difference, which becomes apparent
from treating the system classically, is also reflected mathematically in the quantum framework.



We then show that results of weak measurements and the weak value is reproduced classically
using ERL mechanics. We find that the real part of the weak value is equal to the conditional
expectation value and the shift in the measurement device, proportional to the imaginary part
of the weak value is a measure of disturbance to the state and vanishes in the limit of no dis-
turbance. Finally we calculate an upper bound to the coupling strength and the momentum
uncertainty for the weak approximation for gaussian states. For gaussian states, this is a much
tighter upper bound than the one calculated for all quantum states in [3].
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