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Quantum communication holds promise for unconditionally secure transmission of secret mes-

sages [1, 2] and faithful transfer of unknown quantum states [3]. Photons appear to be the medium

of choice for quantum communication. Owing to photon losses—which increase exponentially

with the communication distance, long-distance quantum communication necessitates quantum

repeaters [4]. A necessary and highly demanding requirement for quantum repeaters [4–18] is now

clarified [19] to be the existence of matter quantum memories [4, 7, 9–11, 14–18] that satisfy not

only Divincenzo’s five criteria for universal quantum computation but also his (really hard) extra

criterion [20]. Therefore, as long as quantum repeaters need to use matter quantum memories,

they may be more difficult than universal quantum computation, which will remain undeniable in

theory, i.e., without a future experimental breakthrough.

Here we show [21] that such a demanding requirement is, in fact, unnecessary by introducing

the concept of all photonic quantum repeaters. As an example of the realization of this concept, we

present a protocol based only on linear optical elements, single-photon sources, photon detectors,

and active feedforwards, similarly to optical universal quantum computation [22–24].

We draw the protocol from a concept, “time reversal,” underlying significant findings in quan-

tum information theory, such as the measurement-based quantum computation [25, 26] and the

measurement-device-independent quantum key distribution [27]. In particular, our protocol corre-

sponds to the time reversal of the conventional quantum repeaters [4–15, 18], where entanglement

swapping is performed before entanglement generation. This is an innovative part of our proposal.

As an example to achieve such a time-reversed quantum repeater, we use cluster-state [26] flying

qubits rather than simple Bell pairs, in contrast to existing quantum repeaters [4–15, 18]. Since
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our protocol is the time-reversed version of a conventional quantum repeater with a polynomial

scaling for the communication distance, our protocol follows the same scaling.

The all photonic nature of our protocol presents the following advantages that should be dis-

tinguished from ones of quantum repeaters based on matter quantum memories: (a) No need of

matter quantum memories implies that the protocol requires no waiting time. As a result, our

protocol can achieve the highest repetition rate in theory, i.e., the rate whose bottleneck is just

determined by the slowest device in the protocol. (b) All the assumed optical components are

available and simpler and better understood than matter quantum memories. For instance, matter

quantum memories can be diverted [5, 12, 28] to single-photon sources, but the converse is not

true. (c) Coherent frequency converters for photons to increase the coupling to matter quantum

memories [29] and to optical fibers [30], although which have been essential in the conventional

schemes, are unnecessary. (d) The protocol is rigorously proved to be much easier to be achieved

than quantum computing through a fair comparison with KLM scheme. (e) The protocol could

work at room temperature. Therefore, our result paves a completely new route toward quantum

repeaters with efficient single-photon sources rather than matter quantum memories. Even from

a fundamental viewpoint, the all photonic feature of our theory enables single photons to fully

describe even quantum repeaters in addition to quantum computation [22–24] and boson sam-

pling [31], which clarifies the potential of single photons as unified and fair language to express

complexity of any kind of quantum information processing.

Details of our work can be found in Ref. [21].
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