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Background and Motivation

Quantum simulation [1–3] has become a promising application of quantum computing since

Feynman’s seminal text [4]. One of the main techniques of quantum simulation algorithm is

the Trotter-Suzuki product formula [5, 6], which has wide applications for Hamiltonian dynamics

simulation in quantum chemistry, quantum control, and also computational condensed-matter

physics. The Trotter-Suzuki formula can also be generalized to Liouvillian superoperator [7], and

then employed for the quantum simulation of Markovian open-system dynamics.

Quantum evolution can be generally described by completely positive mappings, which, for

instance, include non-Markovian dynamics and discrete-time processes such as quantum measure-

ment. The formalism of completely positive mappings is more general than the description based

on Hamiltonian. As a result, quantum simulation algorithms beyond the Trotter-Suzuki formula

need to be developed for the study of much broader quantum phenomena.

Problem

Recently, quantum simulation of channels, which are completely positive, trace-preserving map-

pings, has seen some progresses [8–10]. In this work, we study the problem of quantum simulation

of arbitrary qudit channels. We develop a classical algorithm for the approximate decomposition

of a quantum channel into a convex combination of quasiextreme channels [11], and also design

quantum circuits for efficient simulation of arbitrary qudit channels within a pre-specified error tol-

erance with respect to the diamond norm distance [12]. Our quantum channel simulation algorithm

serves as a distinct approach from Hamiltonian simulation algorithms.

In detail, the problem is, given the mathematical description of a quantum channel E [13], one

needs to design a quantum circuit to approximately simulate it such that the quantum circuit can

generate output states within the error tolerance ǫ for all input states. To this end, there exists

an approach based on Stinespring dilation theorem [14], which extends the channel to a unitary

operator, followed by a partial trace over the ancilla. For a quantum channel E acting on a qudit,



2

the dilated unitary operator U is d3-dimensional, which requires O(d6) primary gates (such as

single-qubit rotation and controlled-NOT gate) [15, 16]. The circuit complexity is much worse

than that for a unitary gate O(d2), which is also the lower bound. For instance, one would obtain

a unitary operator acting on three qubits for a qubit channel, and the quantum circuit requires 20

controlled-NOT gates [16], which generally is beyond the range of current experiments.

Results and Ideas

We take a different approach from the dilation theorem to address the question that whether

the circuit complexity to simulate a quantum channel can be reduced, and whether it can be

reduced to the lower bound. Our previous result on single-qubit channel simulation [9] shows that

a reduction of circuit complexity is indeed possible. The main idea is to decompose a qubit channel

into a convex combination of two quasiextreme channels, each of which can be simulated by unitary

operators acting on only two qubits.

The decomposition of an arbitrary quantum channel into a convex combination of quasiextreme

channels is known as an open problem in quantum information [17]. From an algorithmic point of

view, we consider an approximate decomposition using quasiextreme channels instead of looking for

an analytical exact formalism. Our main method is as follows. We first construct a Kraus operator-

sum representation [18] of an arbitrary quasiextreme channel Ee and design a quantum circuit to

simulate it. Then in the Choi-state representation [11], we employ an optimization algorithm to

decompose the Choi state C for an input channel E into a convex sum of d quasiextreme Choi states

Ce
i , each corresponding to one Ee

i (i ∈ Zd).

A channel is extreme if and only if it cannot be written as a convex sum of other channels.

Choi proved a crucial property of extreme channels that a channel, given by the Kraus operators

{Ki}, is extreme if and only if the set {K†
iKj} is linearly independent [11]. Furthermore, Ruskai

showed that the set of channels with rank at most d is the closure of the set of extreme channels,

and channels in the closure are called quasiextreme channels [17]. Based on Choi’s and Ruskai’s

results, we construct the Kraus operators for an arbitrary extreme channel using the Heisenberg-

Weyl basis {XiZj ; i, j ∈ Zd} for Xi =
∑d−1

ℓ=0 |ℓ〉〈ℓ + i| and Zj =
∑d−1

ℓ=0 e
i2πℓj/d|ℓ〉〈ℓ|. We prove that

an extreme channel Ee is represented by d Kraus operators Ki = WFiV , for any unitary operators

V,W ∈ SU(d), and Fi := XiEi, Ei :=
∑d−1

j=0 aijZj, i ∈ Zd, provided that {aij ∈ C} is chosen such

that the set {F †
i Fj} is linearly independent and

∑d−1
i=0 F

†
i Fi = 11 is satisfied. Moreover, the set

{F †
i Fj} is linearly independent for almost all values of {aij}, except for a (Lebesgue) measure zero

subset. The existence of the unitary operators V andW follows from the property that composition

with unitary channels does not change the extreme property of one extreme channel [19]. Note that
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the cases when {F †
i Fj} becomes linearly dependent are for quasiextreme channels which are not

truly extreme. That is, our construction can yield quasiextreme channels which are truly extreme

or not.

From the Kraus operators {Ki}, we design a quantum circuit based on dilation method. The

quantum circuit acts on two qudits, one for the qudit system, and the other for ancilla since there

are d Kraus operators. Concisely, the circuit unitary operator U e for a quasiextreme channel Ee is

a product of controlled-Xi (Heisenberg-Weyl) gates and controlled-Givens rotations [13] acting on

the two qudits, and a pre and post- unitary operator, V and W , acting on the system qudit. In

the circuit, each Givens rotation contains a single variable, and there are totally d2 − d controlled-

Givens rotations. From a straightforward analysis, we obtain that the circuit complexity of U e is

O(d2), achieving the circuit lower bound. Combined with Solovay-Kitaev type algorithms for gate

decomposition using universal instruction set (such as T gates and Hadamard gates) [20–22], the

circuit complexity becomes O
(

d2 log d2

ǫ

)

.

With the extreme channel circuit developed above, we can use optimization algorithm to de-

compose an arbitrary input qudit channel, which can be simulated by random concatenations of

d quasiextreme-channel circuits. We performed numerical decomposition successfully for quantum

channels of dimension up to four, and the results manifest that it is feasible to obtain the de-

composition with high accuracy (around∼ 0.01) and reasonable computation resources. However,

the optimization method we employed is not convex, it is an open problem whether this can be

converted to a convex optimization problem or not.

Potential Impacts

Our quantum channel simulation algorithm can be viewed as an approach for dissipative

Solovay-Kitaev algorithm of decomposing non-unitary quantum gates, hence a dissipative

Solovay-Kitaev theorem [23]. It is shown that the circuit complexity for simulating a quantum

channel achieves the same circuit lower bound for simulating a unitary gate, by exploring classical

resources. Quantum channel simulation is also a dissipative quantum computing [7, 24], which

facilitates dissipative quantum-state engineering [25], the study of dissipative quantum many-body

phenomena and quantum thermodynamics [26, 27], and also the design of algorithms for mathe-

matical and computational problems. Our quantum channel simulators can be employed to study

properties of well-known channels, such as unital channels, the entanglement-breaking channels

for the study of entanglement and channel capacity [28], Davis channels for the thermalization of

a system [29], as well as much more general mappings including trace non-preserving mappings

and positive mappings.
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