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We study the effects of quantum entanglement on the performance of two classical zero-error
communication tasks among multiple parties. Both of these are generalizations of the two-party
zero-error channel coding problem, where a sender and a receiver want to perfectly communicate
messages through a one-way classical noisy channel. The field of classical zero-error information
theory was started by Shannon’s seminal paper on zero-error channel capacity [Sha56] and it has
developed and influenced a large research area in between information theory, combinatorics,
and computer science. For example, to solve an open problem posed by Shannon [Sha56], Lovász
[Lov79] introduced a parameter, known as the Lovász theta number, defined by a positive
semidefinite program which bounds a combinatorial quantity. This approach has proven to be
very fruitful for many other hard combinatorial problems. Recently, a quantum generalization
of zero-error information theory has been developed [MAC+06, Dua09, CCH11, DSW13] and in
particular, [CLM+10] and [BBL+13] studied the effect of sharing an entangled state in classical
zero-error communication problems between two parties. Along this line of research, we study if
entanglement helps in two multi-party scenarios of classical zero-error channel coding. Our most
interesting result shows that entanglement allows for a peculiar amplification of information,
which cannot happen classically. Before a description of the settings and our findings, we give
a brief overview of the two-party channel-coding problem.

The Two-Party Setting Suppose Alice wants to send a message to Bob but they can com-
municate only through a one-way noisy channel. How much information can she send to him
on average such that Bob learns Alice’s message with zero probability of error? This question
was raised by Shannon in [Sha56] where he proved that multiple uses of the channel can be on
average strictly more efficient than a single use. He also showed that the problem can be cast
in graph-theoretic terms.

A one-way classical noisy channel N that connects Alice and Bob is fully characterized by
its finite input set V , its finite output set W and a probability distribution N (·|v) for every
v ∈ V . Two inputs u, v ∈ V are said to be confusable if they can lead to the same output, i.e.,
there exists w ∈W such that N (w|v)N (w|u) > 0. To a channel N , we associate a confusability
graph G whose vertices are the set of inputs, and two vertices are adjacent if and only if they
are confusable. A set of inputs can be used for zero-error communication if they are pairwise
non-confusable. Hence the largest size m of a message set Alice can employ for one use of the
channel, called the one-shot capacity, is the independence number α(G). (Equivalently, Alice
can communicate at most logα(G) bits of information.) The Shannon capacity of a (channel
with confusability) graph G, c(G) = limn→∞

1
n logα(G�n), is the maximum average number of
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bits that can be communicated with zero-error. Here, G�n is the strong graph power of G and
it is exactly the confusability graph of n channel uses.

The variant of this problem where Alice and Bob might share an entangled state was intro-
duced recently in [CLM+10] and the entanglement-assisted variant of the independence number
α∗(G) and of the Shannon capacity c∗(G) defined. They also showed that entanglement can
improve the one-shot capacity of a channel, i.e., there exists graph G for which α∗(G) > α(G).
Moreover, [LMM+12] and [BBG12] exhibit examples of channels for which sharing an entangled
state improves the zero-error channel capacity, i.e., graphs G with c∗(G) > c(G).

The entanglement-assisted protocol for a single use of a channel is the following. To send a
message x ∈ [m] to Bob, Alice performs a measurement {Au

x}u∈V on her part of the entangled
state and sends the outcome u ∈ V through the channel N . With probability N (w|v), Bob
receives w ∈ W and uses this information to perform a measurement {By

w}y∈[m] on his side of
the entangled state getting the message y as outcome. In the zero-error scenario, we require
y to be equal to x with probability one. In this work, we extend this entanglement-assisted
communication scenario to two multy-party settings.

1 Multiple receivers

Consider a single sender that wants to send a common message to ` receivers. The sender is
connected to each of the receivers through a classical channel. One of the many applications
of this model, known as compound channels, is message broadcasting. The classical zero-error
version of the compound channels was introduced by [CKS90]. Consider a family of channels
N = {N1, . . . ,N`} with the same input set V where Nk connects the sender with the k-th
receiver. A common input v ∈ V is sent to all the receivers and the k-th receiver gets output wk

according to the distribution Nk(wk|v). The goal is for each receiver is to retrieve the original
input v with zero probability of error.

We study the entanglement-assisted version of this problem focusing on the particular in-
stance where all the channels are equal. Similarly to the two-party situation, we can refor-
mulate the problem in graph-theoretical terms. We denote by α1,`(G) and α∗1,`(G) the one-
shot compound-channel capacities of one sender and ` receivers, respectively without and with
a shared entangled state between the parties. Similarly, we use c1,`(G) and c∗1,`(G) for the
compound-channel capacity.

Intuitively, one would expect that due to monogamy of entanglement, as the number of
receivers goes to infinity, entanglement does not give an advantage. We are able to prove
something stronger showing that entanglement does not help in the one-shot compound-channel
capacity whenever the number of receivers is above a certain threshold, which depends only on
the number of outputs of the channel (in the following theorem, θ′e(G) denotes the edge clique
cover number of G plus the number of isolated vertices).

Theorem 1. For any graph G, if ` ≥ θ′e(G) then α∗1,`(G) = α1,`(G).

The key idea of the proof is to use monogamy of non-signaling distributions [MAG06]. A direct
consequence of Theorem 1 is that for any finite number of uses of the channel, entanglement
does not improve the communication when the number of receivers is large enough.

This result does not imply, however, that entanglement is useless for this communica-
tion task. For every fixed number of receivers ` ≥ 1, we can build channels for which the
entanglement-assisted compound-channel capacity is strictly greater than the classical compound-
channel capacity, i.e., for every fixed ` exists G such that c∗1,`(G) > c1,`(G). To show the exis-

tence we use a protocol from [BBL+13], which gives a lower-bound on the entanglement-assisted
capacity based on quantum teleportation [BBC+93].
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2 Multiple senders

Suppose there are ` Alices, each of whom gets access to a classical channel which connects
her to a single Bob. We assume that inputs of one sender cannot be confused with inputs
from another sender. In other words, the receiver knows which one of the senders sent him
the message. Equivalently, this problem can be cast as a two-party situation where Alice has
the freedom to use one among a given set of channels and Bob learns for free which channel
has been used. As before, we focus on the zero-error scenario which can be reformulated using
graph theory. In the classical scenario, this problem was introduced by Alon [Alo98] and further
studied in [AL07]. In this latter paper, the authors showed that it is possible to assign channels
to senders such that only privileged subsets of them are allowed to communicate with high
capacity. In particular, it is possible to ensure that every group of t − 1 cooperating senders
can transmit at low capacity while if the group has at least t senders, they can communicate at
high capacity. To obtain this result, it is essential that different senders have access to different
channels. Unfortunately, we do not know how to study the entanglement-assisted setting for
this general problem and we restrict ourselves to the situation where all channels are equal.
However, one of our results (Theorem 3) has a similar flavor as [AL07].

We denote by α`,1(G) the maximum number of messages that cooperating senders are able
to communicate to the receiver with zero error and one use of the channels (with confusability
graph G). As before, we denote by c`,1(G) the asymptotic quantity. The entanglement-assisted
versions α∗`,1(G) and c∗`,1(G) are the analogous quantities when the parties might share an
entangled state (since the senders are allowed to collaborate, we can effectively picture the
entangled state as being bipartite).

Not surprisingly, if entanglement improves the communication in the two-party case, we
show that such a separation extends also to the multi-sender setting independently from the
number of senders (Theorem 2). The idea is that if each Alice is individually able to perfectly
communicate m messages using entanglement, then ` cooperating Alices can transmit at least
` ·m messages with entanglement.

Theorem 2. For any graph G with α∗(G) > α(G), we have α∗`,1(G) > α`,1(G) for every ` ∈ N.
Furthermore, for any graph G with c∗(G) > c(G), we have c∗`,1(G) > c`,1(G) for every ` ∈ N.

More interestingly, we present examples of graphs for which ` senders have a joint entanglement-
assisted strategy that allows them to communicate strictly more than the sum of their individual
capabilities (Theorem 3). That is, in the entanglement-assisted setting, if each Alice can trans-
mit m messages there is a joint strategy that allows to send strictly more that ` ·m messages.
Note that this effect cannot happen in the classical case. It is known that cooperation among
senders with the same channel does not improve the communication neither in the finite nor
the asymptotic number of channel uses [Sha56]. Hence, this phenomenon is a peculiarity of the
entanglement-assisted setting.

Theorem 3. In the entanglement-assisted setting, for every n ∈ N, there exists a channel and
a number of senders k such that cooperation among senders allows them to send, with n uses
of the channels, strictly more messages than the sum of their individual possibilities.

This result is surprising and is the one that requires the most technical proof. We use properties
of a class of orthogonality graphs1, of the Lovász theta number together with a parameter
introduced in [BBL+13]. It is an interesting open problem whether this improvement gained by
cooperation extends also to the asymptotic regime.

1The orthogonality graph Ωk has all the vectors {±1}k as vertex set and two vectors are adjacent if orthogonal.
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