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I. INTRODUCTION

When two distant parties would like to perform some quantum protocol using a specific suitable
entangled state, those parties need to prepare the entangled state by LOCC with high accuracy.
However, it can be thought that the parties can only generate an entangled state different from
the desired one by their quantum channel. To overcome the problem of state preparation, they can
perform LOCC conversion for the given entangled state and generate the target entangled state. In
the conventional setting of LOCC conversion, LOCC operations is supposed to directly generate a
target entangled state from a given initial entangled state by LOCC conversion, and the asymptotic
behavior has been intensively studied [? ? ? ? ? ? ? ]. In particular, although the second-order
rate of typical quantum tasks are represented by the standard normal distribution, the authors
showed in [? ] that the second-order rate of LOCC conversion can not be represented by the
standard normal distribution and is characterised by a new kind of probability distribution named
the Rayleigh-normal distribution. In this sense, the asymptotics of LOCC conversion contains novel
aspect which has not appeared in known typical quantum tasks.

Here, unlike the conventional setting of LOCC conversion, we suppose that LOCC conversion
passes through a quantum system to store entangled states named entanglement storage. That is,
an initial entangled state is once transformed into the entanglement storage with smaller dimension
by LOCC and then transformed again to generate a target entangled state by LOCC. As a special
case, when the target entangled state is the same as the initial entangled state, this conversion can
be regarded as LOCC compression of entangled states into the given entanglement storage. Since
the storage to keep the entangled states is implemented with a limited resources, the analysis for
LOCC compression is expected to be useful to store entanglement in small quantum system. In
the asymptotics of LOCC conversion via entanglement storage, a kind of extension of the Rayleigh-
normal distribution play an important role.

II. LOCC CONVERSION VIA RESTRICTED STORAGE

We consider two-step LOCC conversions for entangled states. As stated above, an initial state
is converted into the intermediate quantum system called storage by LOCC in the first step, and
the converted state is converted again to a target state by LOCC in the second step. We call such
an intermediate quantum system the entanglement storage. In the following, let the entanglement
storage has the form of H⊗N

qubit where Hqubit is the two-qubit system C2⊗C2 and thus has the storage
size of N ebits. Then we analyze the asymptotic behavior of LOCC conversion via entanglement
storage when an initial state and a target state are i.i.d. and pure. Since there is the entanglement
storage unlike the conventional LOCC conversion, the storage size restricts the number of copies
of a target state which can be approximated by LOCC even when the number of copies of an
initial state is large enough. In this section, we clarify the relation between the storage size and
the number of copies of a target state under accuracy constraint. We adopt the fidelity F (·, ·)
as a measure of closeness between two quantum states. Then the maximum accuracy of LOCC
conversion via entanglement storage is described as follows

F (ψ → φ|N) := sup
Γ,Γ′:LOCC

F (Γ′ ◦ Γ(ψ), φ) (1)

where ψ and φ are quantum states on bipartite systems H and H′ respectively, Γ and Γ′ are LOCC
conversions from H to the storage and from the storage to H′, and the sup is taken over all pairs
(Γ,Γ′) of LOCC conversions. Here, we note that a converted state by LOCC in storage is not
necessarily a pure state. However, in the optimal process, we can assume that the converted state
by LOCC in storage is pure [? ].
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FIG. 1: LOCC conversion via the entanglement storage.

In the first-order asymptotic setting, the following rate region represents the relation between
the storage size and the number of copies of a target state under accuracy constraint ν > 0:

R1(ν) :=
{

(s1, t1) ∈ R2
+

∣∣∣∣ lim inf
n→∞

F
(
ψ⊗n → φ⊗t1n|s1n

)
≥ ν

}
.

Then we have the following characterization of the first-order rate region:

Theorem 1 For ν ∈ (0, 1),

R1(ν) =
{

(s1, t1)
∣∣∣∣0 < s1, 0 < t1 ≤

min{Sψ, s1}
Sφ

}
, (2)

where Sψ and Sφ are the von Neumann entropy of ψ and φ, respectively.

The form of the first-order rate region is shown in the left hand side of Fig. ??.
Then we proceed to the second-order asymptotics. In the following, we set a first-order rate pair

(s1, t1) to the optimal one (Sψ,
Sψ
Sφ

). Similarly to the first-order case, in the second-order asymptotic
setting, the following rate region represents the set of achievable second-order rate pairs between
the storage size and the number of copies of a target state under accuracy constraint ν > 0:

R2(ν) :=

{
(s2, t2) ∈ R2

∣∣∣∣ lim inf
n→∞

F

(
ψ⊗n → φ

⊗
Sψ
Sφ
n+t2

√
n
|Sψn+ s2

√
n

)
≥ ν

}
.

To derive the concrete form of the above second-order rate region, we introduce a new kind of
probability distribution function below. For µ ∈ R and v ∈ R+, let Φµ,v be the cumulative
distribution function of the normal distribution with the mean µ and the variance v. We denote
Φ0,1 simply by Φ. We generalize the Rayleigh-normal distribution defined in [? ] as follows.

Definition 2 For v > 0 and s ∈ R, a generalized Rayleigh-normal distribution function Zv,s on R
is defined by

Zv,s(µ) = 1 −

(
sup
A∈As

∫
R

√
dA

dx

√
dΦµ,v

dx
dx

)2

, (3)

where the set As of functions A : R → [0, 1] is defined by

As =
{
A
∣∣∣ continuously differentiable monotone increasing , A(s) = 1, Φ ≤ A ≤ 1

}
.

The generalized Rayleigh-normal distribution function is a cumulative distribution function, and
thus, it determines a probability distribution on R. We note that this function is a new kind of
probability distribution function, and its concrete computable form and properties are given in our
paper [? ] for the first time.

Then the second-order rate region is characterized by the generalised Rayleigh-normal distri-
bution by using constants Vψ := Tr{(TrB ψ)(TrB ψ − SψIA)2}, Cψ,φ := SψVφ

VψSφ
and Dψ,φ := Sφ√

Vψ
as

follows:
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FIG. 2: The left figure is the first-order rate region R1(ν). The right figure is the second-order rate region
R2(s1, t1, ν) when both ψ and φ are non-maximally entangled states with Cψ,φ < 1. The function Zv =
lims→∞ Zv,s is the Rayleigh-normal distribution in [? ]. The figures of other cases (e.g. Cψ,φ ≥ 1 or φ is
maximally entangled) are shown in [? ].

Theorem 3 For 0 < s1 ≤ Sψ, s2 ∈ R and ν ∈ (0, 1),

R2 (ν) =
{

(s2, t2)
∣∣∣∣t2 ≤ D−1

ψ,φZ
−1

Cψ,φ,
√
Vψ

−1
s2

(1 − ν2)
}
.

Thanks to Theorem ??, the concrete form of the second-order rate region can be shown as in the
right hand side of Fig. ?? although it can not be directly obtained from the definition.

III. ENTANGLED STATE COMPRESSION BY LOCC

We consider the case when an initial state φ equals a target state ψ. Then the LOCC conversion
via entanglement storage is regarded as a compression process for entangled states. There already
exist some studies about LOCC compression for entangled states. In particular, Schumacher [? ]
derived the optimal first-order rate of LOCC compression for entangled states in the framework
of the first-order asymptotics. Here, we consider the LOCC compression in the framework of the
second-order asymptotics and derive some observations which essentially can not be obtained from
the first-order asymptotics. We focus on the following maximum number of copies of a target state
under the constraint of accuracy and storage size:

Ln(ν,N) = max{L ∈ N|F (ψ⊗n → ψ⊗L|N) ≥ ν}.

When the storage size has the optimal first-order compression rate Sψ and the second-order rate
s2, the difference between the numbers of copies of the initial and optimally recoverd states is given
by Theorem ?? as

n− Ln(ν, Sψn+ s2
√
n) ∼= −D−1

ψ,ψZ
−1

1,
√
Vψ

−1
s2

(1 − ν2)
√
n. (4)

The formula (??) relates with the irreversibility of entanglement concentration [? ]. That is, when
s2 is smaller than

√
VψΦ−1(ν2) for a required accuracy ν, the right-hand side in (??) is positive

as shown in [? ] and represents the loss which inevitably occurs even in the optimal compression
process. Moreover, from [? ], the LOCC conversion in the optimal compression coincides with
LOCC conversion used in the optimal entanglement concentration. In addition, (??) also relates
with LOCC cloning [? ]. That is, when s2 is larger than

√
VψΦ−1(ν2), the right-hand side in (??)

is negative and it represents that the number of copies of the recovered state after the compression
process exceeds that of the initial state under the accuracy constraint. While we argued about
approximate LOCC cloning without entanglement storage (or with infinite storage) in [? ], the
above fact says that approximate LOCC cloning can be realized even when there is entanglement
storage with the tight first-order rate Sψ as long as the second-order rate of the size of storage is
large enough.
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