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The difficulty of simulating quantum systems on classical computers has attracted
considerable attention over many years. While the origin of this difficulty is still to
be fully understood, the entanglement of quantum states and dynamics plays a role in
many cases. In the context of many-body physics, overcoming this problem relies on
using ansatz states that one hopes are simple enough to compute with, yet sophisticated
enough to capture important phenomena. In this work we consider one such approach
— the so-called PEPS (‘projected entangled pair states’) formalism for a spin lattice [1].
In the PEPS formalism, an underlying lattice of pairwise-entangled ‘virtual’ particles is
‘projected’ at each site to give the final multiparticle entangled ansatz state. The use
of entangled ‘virtual bonds’ brings complexity to the description, while helping to break
the multiparty entanglement down into two-particle form that may be more tractable.
Nevertheless, PEPS states can still be very complex. The cluster state of measurement
based quantum computation is an example of a PEPS state [2], so sampling the outcomes
of local measurements on PEPS states can be classically difficult.

In this work [3] we use the PEPS formalism for the simulation of quantum systems,
but in the context of generalised entanglement that has arisen in the foundations of
quantum theory [4]. A quantum state of two or more particles is said to be (quantum)
entangled if it cannot be written as a probabilistic mixture of products of local operators
drawn from the set of single particle quantum states. However, in some contexts (partic-
ularly involving restricted measurements), one may consider allowing the local operators
to be drawn from a non-quantum set of operators (the dual space of the restricted mea-
surements) other than the set single particle quantum states. In such situations states
that are entangled in the quantum setting may become separable from such a generalised
perspective [5]. If an operator has a separable decomposition w.r.t to a set S, we say
that the operator is S-separable.

The above observation naturally leads to the following question: if we treat the quan-
tum entangled virtual bonds in the PEPS formalism as separable states with respect to
some non-quantum state space, then is it possible to exploit this separability in order
to improve the current classical simulation techniques or provide alternative classical
descriptions (such as local hidden variable models) for some PEPS states?

We suppose that the many-particle quantum state consists of d level particles arranged
on a lattice, and that the lattice sites are all of degree v. The PEPS formalism allocates
a ‘virtual’ quantum particle of D-levels to either end of each edge on the lattice, such
that the two particles corresponding to each edge are in a maximally entangled state |D〉.
The ansatz for the state (of the d-level particles) is then obtained by applying a linear
transformation A taking the v virtual particles at each site (which live on C⊗vD ) into a
real particle at that site (living on Cd). Collectively this gives a final (unnormalised)
quantum state for the whole lattice from which we may try to calculate properties of
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interest. The parameter D is known as the ‘bond-dimension’, and in a typical application
one tries to approximate the state of a quantum many-body system while trying to keep
D as low as possible.

Our method for constructing classical models for PEPS states will rely upon the use
of non-quantum state spaces to make both the virtual bonds and the physical state
separable. We need one generalised state space for the D level virtual particles, denoted
V , and one generalised state space for the ‘real’ d level particles, denoted R. The
state space R is chosen to be the dual of a restricted set M of single particle quantum
measurements that we are allowed to make on the d level particles, whereas V is chosen to
be the smallest set for which the maximally entangled virtual pairs |D〉 are V -separable
meaning they may be written as

|D〉〈D| =
∑
j

pjρ
j
A ⊗ ρ

j
B (1)

where ρjA and ρjB are drawn from the convex sets VA and VB with V = (VA, VB), and pj
forms a probability distribution. Using the 2-norm as a notion of set size, we prove that
the smallest V has at least D2 operators [6].

Theorem 1 Consider any convex sets of operators VA, VB (not necessarily Hermitian or
of unit trace) satisfying ||VA||2, ||VB||2 ≤

√
D for which |D〉 = 1√

D

∑
j |jj〉 is (VA, VB)-

separable. Then the following must hold: (a) VA, VB must contain at least D2 operators
with 2-norm

√
D, and (b) any (VA, VB)-separable decomposition of |D〉 must involve only

operators with 2-norm equal to
√
D. Finally, (c) given an operator basis consisting of D2

orthogonal operators of 2-norm
√
D, the convex hull of the basis operators provides such

a set, and (d) all such convex sets cannot be made strictly smaller while maintaining |D〉
separability.

Fixing D to be prime, we can explicitly find a basis of D2 Hermitian operators of
unit-trace corresponding the phase point operators that arise in the study of discrete
Wigner function [7].

We now discuss how V and R can be used to write down classical models for some
PEPS states. Consider a PEPS state defined by linear transformation A acting upon the
virtual particles at each lattice site with degree v. If the linear transformation A satisfies

tr{A(V ⊗v)} > 0,
A(V ⊗v)

tr{A(V ⊗v)}
∈ R (2)

for all V operators appearing in equation (1), then this means that the PEPS state
defined by A is R-separable. This can be seen as follows. As we have chosen the state
space V such that the virtual bonds are separable, the virtual quantum state ΨV can be
represented as

ΨV =
∑
i

piCi (3)

where the pi are probabilities and the Ci are products of operators from V , then we
can rewrite the PEPS transformation as (abusing notation slightly to now let A be the
transformation on the whole lattice):

ΨV → Ψ =
∑
i

pitr{A(Ci)}
tr{A(V )}

A(Ci)

tr{A(Ci)}
=

∑
i

qiWi (4)
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where we have defined:

qi :=
pitr{A(Ci)}
tr{A(Ci)}

Wi :=
A(Ci)

tr{A(Ci)}
(5)

If conditions (2) are satisfied by A then the qi will form a positive probability distribution
and the Wi will be products of operators from R, hence ensuring that Ψ is R-separable.
At the very least this would mean that Ψ has a local hidden variable model for measure-
ments from M . Moreover, if it is possible to efficiently sample the classical probability
distribution qi, then because the Wi are products of operators from R, it will be possible
to efficiently sample the outcomes of measurements from M on Ψ. These characteristics
can in principle hold even if Ψ allows quantum computation with measurements out-
side M . The following recipe demonstrates that we can obtain multipartite quantum
entangled states which are R-separable.

Recipe 2: Let |φ〉 be a pure quantum state that is strictly from the interior of the
convex set R and define the rank-1 Kraus operator Q = |φ〉〈mmm...|. Recall that the
Ci in equation (3) are products of single virtual particle states and the |m〉 are chosen
to have strictly positive overlap with each single one. Then Q is a rank-1 operator
whose corresponding CP map strictly satisfies the conditions (2). Hence by continuity
we may pick a rank > 1 Kraus operator Q′ to be a small perturbation of Q, such that
the corresponding CP map strictly satisfies the conditions (2). As Q′ is a Kraus operator
of rank > 1 the PEPS state will be a pure entangled quantum state. However, as it is
also R-separable it will have a local hidden variable model w.r.t. M �

This argument may not seem totally satisfying, as the PEPS states it creates seem to
be close to product states. However, note that the argument works for any lattice shape
and size, extending to an arbitrarily large number of particles. Could it hence still be
possible for such a state to contain high enough many-particle quantum entanglement to
do e.g. quantum computation, or have an infinite localisable entanglement length? We
have not been able to answer this, but see e.g. [8] for ‘almost’ product pure quantum
states that are universal for quantum computation.

The difficulty of resolving such questions may be a consequence of being too general,
by trying to provide a single recipe that works for all R. However, for specific choices of
R it is possible to find examples that illustrate a significant difference between quantum
and non-quantum entanglement. Consider for instance the example of a PEPS state with
a trivial identity projector. Each site is hence a quantum particle of Dv levels. Using
entanglement swapping this state has infinite entanglement length. For most lattices the
state would be universal for quantum computation using appropriate local measurements.
However, if the allowed measurements M are restricted to Pauli measurements on each
D-level subsystem at each site, then the system is R-separable. While this may seem
like a trivial example, it demonstrates that even for tomographically complete sets of
measurements at each site, there is no reason to expect that R-separability should imply
that the state will not contain powerful forms of entanglement.
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