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Recent work has shown that quantum simulation is a valuable tool for learning empirical mod-
els for quantum systems. We build upon these results by showing that a small quantum simulators
can be used to characterize and learn control models for larger devices for wide classes of physically
realistic Hamiltonians. Our protocol achieves this by applying Bayesian inference in concert with
Lieb-Robinson bounds and interactive quantum learning methods to show that small quantum sim-
ulators can be used to efficiently compute the likelihoods needed to infer a model for a much larger
quantum device. We further show that the inversion steps used in our algorithms lead to effective
Lieb-Robinson velocities that are epistemic, in that they depend on the algorithm’s uncertainty in the
system Hamiltonian rather than the Hamiltonian itself. This causes the effective light cones about lo-
cal observables tighten as the algorithm learns more about the system, which allows small quantum
simulators to simulate their dynamics longer and in turn allows for learning to proceed at an expo-
nential rate. We then use this approach to learn control maps and thereby provide a scalable method
for characterizing and controlling large systems.

Building a large scale quantum computer or quantum
simulator with existing technology seems to be a near-
herculean engineering challenge. Despite these diffi-
culties, rapid progress has been made within the last
few years towards building computationally useful de-
vices that promise to revolutionize the ways in which
we solve problems in chemistry and material science,
data analysis and cryptography [1–5]. Yet recently, the
difficulties involved in calibrating and debugging quan-
tum devices have suggested another possible applica-
tion for a small scale quantum computer: characterizing
and controlling a larger quantum computer. This pro-
cess is known as quantum bootstrapping and its impor-
tance to quantum computing is perhaps best summa-
rized by Jon Dowling [6]: “. . . without quantum boot-
strapping it is impossible using today’s classical com-
puting resources to carefully characterize what is going
on for 16 or more entangled qubits.”

Here, we provide a practical quantum bootstrapping
method by building on recent work showing that quan-
tum resources, in the form of a quantum simulator or
quantum computer, can be used to lead to exponential
reductions in the cost of learning a Hamiltonian model
for the system [7, 8], relative to state of the art methods
such as classical particle filters [9, 10]. These approaches,
known as Quantum Hamiltonian learning, have been
shown to be robust to a wide variety of errors [8] and are
surprisingly tolerant of approximation errors in the sim-
ulator. A major limitation, however, is that they seem-
ingly require that the quantum simulator used to char-
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acterize the system is at least as large as the system of
interest.

Alternative classical methods based on information
locality, such as the method of Da Silva et al [11], do
not suffer from this problem. However, the assump-
tions that enable classical learning in such methods can
render them impractical for learning control maps for
poorly calibrated quantum devices, which need not sat-
isfy these assumptions. Furthermore, we show using
an argument based on Fisher information that the short
time evolutions used in such methods are suboptimal
for characterizing devices that lack free ensemble mea-
surements. A new method that can overcome the draw-
backs of both QHL and existing classical schemes is
therefore needed before quantum control and character-
ization of large quantum systems becomes a reality.

Our approach combines ideas from both quantum
Hamiltonian learning (QHL) [7] and the information lo-
cality arguments used in [11] to circumvent the limita-
tions of each approach alone. Our results therefore nat-
urally lead to two distinct applications:

Compressed QHL: Learning a Hamiltonian model for a
large quantum system with rapidly decaying in-
teractions using a small quantum simulator.

Quantum bootstrapping: Designing controls for a larger
quantum system with rapidly decaying interac-
tions using a small quantum simulator.

Our work not only develops both of these applications
but also provides both analytical and numerical analy-
ses of their performance.

A phenomenon that we call epistemic information lo-
cality forms the basis for compressed QHL and in turn
quantum bootstrapping. We make this rigorous via
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FIG. 1: Experiment and simulator design for (a) quantum Hamiltonian learning and (b) interactive quantum
Hamiltonian learning with untruncated quantum simulation resources. The simulation phase is used to estimate

the likelihoods of the datum found in the experiment phase.

FIG. 2: Light cones for A(t) for a single step of an r
step protocol. The green region is the light cone after
the evolution in the untrusted device, and the blue
region is after inversion in the trusted device. The

dashed lines show the propagation of A(t) from the use
of approximate inversion.

Lieb–Robinson bounds, which show that an analog of
special relativity exists for local observables evolving
under Hamiltonians that have rapidly decaying inter-
actions [11–13]. Lieb–Robinson bounds give an effective
“light cone”, as illustrated in Figure 2, in which the evo-
lution of an observable A can be accurately simulated
without needing to consider qubits outside the light
cone. Specifically, they imply that a local observable
A(t) provides at most an exponentially small amount
of information about subsystems that are further than
distance st away from the support of A(0) ≡ A, where s
is the Lieb–Robinson velocity for the system and t is the

evolution time. Here, s is analogous to the speed of light,
and only depends on the geometry and strengths of the
interactions in the system [12, 13]. Thus, if st is bounded
above by a constant and the support of A is small then
the measurement can be efficiently simulated.

We emulate long evolutions by swapping the quan-
tum state of a subsystem of the larger (uncharacter-
ized) system into a quantum simulator and then approx-
imately invert the evolution using a guess for the Hamil-
tonian dynamics. By repeating this process rapidly, the
propagation of the light cone of the observable can be
delayed from extending beyond the range that can be
simulated in the smaller simulator. One step of this pro-
cess is illustrated in Figure 2.

In particular, we note that QHL can be used with an
interactive likelihood evaluation, as shown in Figure 1,
such that the observable evolves under the Hamilto-
nian of interest inverted by a hypothesis. We show that
since the experiment design heuristic employed by QHL
chooses this inversion hypothesis to be an approxima-
tion to the Hamiltonian of interest, we obtain character-
istic Lieb–Robinson velocities that shrink as uncertainty
about the system is reduced. That is, the light cone rep-
resents an “epistemic” speed of light in the coupled systems
that arises from the speed of information propagation depend-
ing more strongly on the uncertainty in the Hamiltonian than
the Hamiltonian itself. Since the effective speed of light
slows as more information is learned, long evolutions
can be used in situations where the uncertainty is small.
This removes one of the main restrictions of [11].

Compressing QHL in this way is essential for our con-
cept of quantum bootstrapping, wherein a small quan-
tum simulator is used to control a larger quantum simu-
lator, which can then be used to control an even larger
simulator and so forth. Bootstrapping proceeds by us-
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FIG. 3: Error in compressed quantum Hamiltonian
learning as a function of the number of experiments
per scan for 50 qubit Ising model with exponential

decaying interactions.
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FIG. 4: Distribution of errors for each of the 49
Hamiltonian terms in the bootstrapped
Hamiltonian for a 50 qubit Ising model.

ing compressed Hamiltonian learning to infer what each
of the controls in the system do in isolation then uses an
inversion process to find optimized controls that better
implement the target dynamics. This process thereby re-
cursively uses a small, accurate simulators to tune larger
but inaccurate simulators.

In the case that the true Hamiltonian on the larger sys-
tem is an affine function H(C) of control settings C, then
we bootstrap the system by using compressed QHL to
learn the Hamiltonian implemented for each of a set of
different controls. That is, we start by learning the inter-
nal evolution H(0), then proceed to learn the Hamilto-
nian for each of H(Ci), where Ci is taken to have sup-
port only on the ith control. Then once these control
maps are learned, our bootstrapping algorithm finds the
settings that minimize the error in implementing a tar-
get Hamiltonian via least–squares fitting.

In order to show that our compressed quantum
Hamiltonian learning and bootstrapping algorithms are
scalable to large systems, we perform numerical studies
with Ising-model Hamiltonians on spin chains, where
interactions are taken to decay exponentially with dis-
tance. First, we apply compressed QHL to infer a Hamil-
tonian for unknown 50 qubit Ising-models using an 8-
qubit simulator as the trusted simulator. In Figure 3, we
show that the error in compressed quantum Hamilto-
nian learning shrinks exponentially with the number of
experiments performed, in agreement with results ob-
tained in the uncompressed case [7, 8]. Since the inter-
actions also decay exponentially for these models, the
Hamiltonian learning process is efficient.

Next, we demonstrate bootstrapping by using an 8
qubit simulator to infer the control map that describes
a 50 qubit quantum simulator, from an initially uncal-
ibrated device with crosstalk on the controls. The re-
sults shown in Figure 4 demonstrate that a modest set
of experimental outcomes suffices to find controls that
reduce the error in the larger device by over two orders

of magnitude. These improvements are sufficiently dra-
matic that the bootstrapped system could realistically be
used to bootstrap an even larger quantum device.

To summarize, we show that small quantum simula-
tors can be used to characterize and calibrate larger de-
vices, thus providing a way to bootstrap to capabilities
beyond what can be implemented classically. In partic-
ular, we provide a compressed quantum Hamiltonian
learning algorithm that can infer Hamiltonians for sys-
tems with local or rapidly decaying interactions. This
algorithm is a necessary subroutine for bootstrapping
a quantum system; wherein a small simulator to learn
controls that correct Hamiltonian errors and uncertain-
ties present in a larger quantum device. This bootstrap-
ping protocol is useful, for instance, in calibrating con-
trol designs with cross-talk, uncertainties in coupling
strengths and other effects that cause the controls on the
quantum system to deviate from the designed behavior.

Our approaches, being based on quantum Hamilto-
nian learning, inherit the noise and sample error robust-
ness observed in that algorithm [7, 8]. We provide nu-
merical evidence that our techniques apply to systems
with as many as 50 qubits, tolerates low precision ob-
servables and learns at an exponential rate. Thus, our
quantum bootstrapping algorithm provides a scalable
technique for application in even large quantum de-
vices, and in experimentally-reasonable contexts. Our
work therefore provides a critical resource for building
practical quantum information processing devices and
computationally useful quantum simulators.
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