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Tensor network states constitute an important variational set of quantum states for numeri-
cal studies of strongly correlated systems in condensed-matter physics, as well as in math-
ematical physics. This is specifically true for finitely correlated states or matrix-product
operators, designed to capture mixed states of one-dimensional quantum systems. It is
a well-known open problem to find an efficient algorithm that decides whether a given
matrix-product operator actually represents a physical state that, in particular, has no neg-
ative eigenvalues. We address and answer this question by showing that the problem is
provably undecidable in the thermodynamic limit and that the bounded version of the prob-
lem is NP-hard in the system size. We discuss the profound consequences for the descrip-
tion of quantum many-body systems using tensor networks. This work shows how ideas of
computer science can help to address key problems of quantum many-body physics beyond
questions of Hamiltonian complexity.
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Computational quantum many-body physics is marred by the fact that standard computational
descriptions of states require exponentially many parameters. Fortunately, for many physically
relevant problems, one does not need to consider all those parameters to capture natural prop-
erties extremely accurately. One of the pillars on which computational many-body approaches
rest is the framework of tensor network methods. Here, the relevant degrees of freedom are
parameterized by very few numbers which are organized in terms of tensor networks that are
contracted in order to compute expectation values [2-9]. Notably, the density-matrix renor-
malization group approach, the most successful method to numerically determine ground state
properties of strongly correlated one-dimensional models, can be cast into such a form [2, 3]. In
this language, the problem of minimizing the energy can be phrased as a variational principle
over matrix product (or purely generated C*-finitely correlated) states [10]. The natural ana-
logue that also encompasses mixed quantum states are matrix product operators (MPOs). Again,
they feature strongly in numerical algorithms [1 1, 12], for example when investigating stationary
states of local Liouvillians modelling open quantum systems [13, 14] or Gibbs states [15, 16].
However, general MPOs are not guaranteed to represent physical states, which is the source of
considerable conceptual and computational difficulties. It would thus be highly desirable to de-
sign an efficient algorithm capable of checking whether a given matrix product representation
defines a positive operator (see Figure 1). To decide if such an efficient “local test for positivity”
exists is a fundamental problem in the field, implicit already in its early formulations [10].
Here, we address and answer this question: Determining whether an MPO defines a physical
state in the thermodynamic limit is a provably undecidable problem. We also show that the
bounded version of the problem is NP-hard in the number of tensors, burying hopes that one
could find an efficient algorithm testing for positivity exactly. This is proven for quantum spin
chains with local dimension d = 2 by a polynomial reduction from the Post correspondence
problem and a bounded variant thereof.
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Figure 1: An MPO as a tensor network. The problem is to determine whether or not this defines a positive operator.

To give a practical example: One can approximate stationary states of local Liouvillians by
iteratively applying the Liouvillian to a state described as an MPO and subsequently truncat-
ing the tensors. To avoid inconsistent results, one has to check whether the truncation step has
caused the state to become “too unphysical” in that it has created eigenvalues that are more
negative than some chosen tolerance threshold. This we prove to be infeasible. The practical
implications of our work are as follows: One hand they motivate the quest for finding specific
feasible instances that might exist. This quest reminds of the task of finding efficient contrac-
tions of two-dimensional planar tensor networks, even though this task has been identified to be
#P-complete [17]. On the other, it shows that one should direct one’s efforts towards finding
approximate solutions. The insight presented here adds a natural many-body problem to the list
of quantum mechanical questions that have recently been identified not only as computationally
hard, but as outright undecidable [18-21]. We also point out connections to the theory of hidden
Markov models.

Results

In the statements of the various problems below, MPO-tensors are specified by rational numbers.
These have finite descriptions and can thus serve as inputs to algorithms. Allowing for more
general numbers (e.g. algebraic numbers) would make the problem only harder. Our results are
stated for MPOs of the following translation invariant form:

Definition 1 (Matrix product operator (MPO)). An instance of MPO-tensors is given by a tensor

_ (a,8) dxdxDxD D ; ; :
M = (M” >a_,6€[d]7.i,j€[D} € Qoxaxbx anc{ vecto.rs |L),|R) € Q. The dimension d is
called physical dimension and D (MPO)-bond dimension. The generated translation invariant

MPO for system size n is

p(L,M,R,n) = > LM ;,® @M ; R,
jertt

In the precise statement of the problem, we allow for a threshold A which bounds the “degree of
negativity” that is deemed acceptable. (We call positive semi-definite operators just positive.)

Problem 2 (Bounded MPO threshold problem (BTP)).

Instance: MPO-tensors M, |L), and |R), threshold \ € Q, and system size n.
Question: Is the MPO p(L, M, R,n) + A1 positive?

Problem 3 (MPO threshold problem (TP)). The TP is defined in the same way as its bounded
version above except that there is no restriction on the system size and the question is: Is there

ann € Z such that p(L, M, R,n) + A1 is not positive?
We obtain the following results these problems to be not tractable on classical computers.

Theorem 4 (NP-hardness of the bounded MPO threshold problem). For any A € Q and physical
dimension d > 2, the BTP is NP-hard.



Theorem 5 (Undecidability of the MPO threshold problem). For each threshold A € Q the TP
is undecidable. In particular, this holds for the case where the physical dimension is d = 2, the
bond dimension is D = 42, and the matrices M; ; are diagonal for all i,j = 1,...,D.

We end by sketching two corollaries of these results. In Ref. [30] local purifications of positive
MPOs in terms of matrix product states are investigated and it is shown that the arising MPS-
bond dimension can in general not be bounded independently of the system size. This suggests
that such purifying MPS would require high bond dimensions when used instead of MPOs in
numerical simulations. The authors go on to describe two explicit algorithms that construct
purifying MPS given an MPO representation. These algorithms are not in general efficient, and
the natural question arises whether an efficient algorithm might be identified in the future. As a
consequence of our Theorem 4 we obtain:

Corollary 6 (Purifying matrix-product states). There is no polynomial-time algorithm that can
convert an MPO representation into a purifying MPS.

Along different lines, there has been a recent surge of interest in using efficient many-body de-
scriptions for the purpose of quantum state tomography of large systems [31-33]. The most
explicit work makes use of MPO rather than purifying MPS [32] and provides an efficient algo-
rithm. We can now show that a similar result for purifying MPS is not possible:

Corollary 7 (Tomography). There is no polynomial-time algorithm for reconstructing a state
with an efficient purifying MPS description from local physical measurements performed on it.

Conclusions and outlook

Finally, we comment on ways to efficiently detect negativity locally by calculating expectation
values with respect to matrix product states (MPS) of small bond dimension. In the BTP one
is asked to exactly delineate the MPOs with smallest eigenvalues above —\ from those with
smallest eigenvalues below —A. In practice, it would be acceptable if an algorithm reliably
recognizes whether a state p is either sufficiently positive, i.e., p > —A, or violates a threshold
by at leaste > 0, i.e., p # —(X+¢€). Such an approximate version is allowed to give unspecified
results on the narrow band between the two cases. In order to make this precise, we state the BTP
as a weak membership problem. The MPO provided in the proof of Theorem 4 has a trace that
is exponentially bounded from above. Hence, as a corollary, one obtains that the BTP remains
NP-hard as a weak membership problem if € is exponentially small in nn. This statement remains
true for algebraic and not necessarily rational inputs. Weak membership formulations seem to be
natural for a variety of problems in quantum information. For instance, NP-hardness of testing
separability of quantum states as a weak membership problem was established first [34] for an
exponentially small “error” e and, much later [35], for a polynomially small e, in fact, using
key methods of the previous approach [34]. Hence, our work is an invitation to explore whether
the BTP as a weak membership problem is also NP-hard for only polynomially bounded ¢ or,
instead, to actually find an algorithm that efficiently solves that problem. Another important
question is whether there are physically relevant instances for which positivity is efficiently
decidable and how this can be exploited best in numerical algorithms.

This work shows that ideas of computer science can help to make progress on questions in the
theory of open and closed quantum many-body systems, beyond questions that are usually con-
sidered in the context of Hamiltonian complexity. It also invites a plethora of future research
directions. It would be a significant step forward, one the one hand, to find instances and ap-
proximations where (near-)positivity can be guaranteed. On the other, this can be seen as the
start of the program of identifying those problems in the context of tensor network states that are
not decidable algorithmically.
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