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It was proposed in [1] to extend the definition of quantum computers
by allowing a quantum system to have control over the order that two
blackbox gates would be applied. This control can be shown to be impos-
sible to implement with ordinary quantum circuits.

With this new resource it is possible to decide whether a pair of black-
box unitaries commute or anticommute with a single use of each unitary,
whereas in a circuit with a fixed structure at least one of the unitaries must
be used twice [2].

It was still unknown whether this resource could provide for a reduc-
tion in complexity for solving a computational problem. Using the gen-
eralization to n blackboxes proposed in [3], we show a problem that can
be solved with O(n) queries to the blackboxes, whereas the best known
algorithm with fixed order requires O(n2) queries.

The quantum control of the order between n unitary gates can be for-
malized by introducing the n-switch gate. Let {Ui}n−1

0 be a set of unitaries
and

Πx = Uσx(n−1) . . . Uσx(1)Uσx(0)

for some permutation σx, where x is a chosen labelling of permutations.
Then the n-switch gate Sn is a controlled quantum gate, defined by

Sn|x〉|ψ〉 = |x〉Πx|ψ〉.

The computational problem is defined as follows: given a set {Ui}n−1
0

of unitary matrices of dimension d ≥ n!, decide which of the properties Py
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is satisfied by this set, given the promise that one of these n! properties is
satisfied. We say that the set of unitaries satisfies property Py if it is true
that

∀x Πx = ωxyΠ0,

where ω = ei 2π
n! . For example, property P0 is the property that Πx = Π0

for all x, i.e., that all the matrices commute with each other.
The requirement that d ≥ n! comes from the fact that it is not possible

to satisfy property Py for every y if d < n! For example, if d = 2 only P0

and Pn!/2 are satisfiable.
The protocol for solving this problem is the following: initialize the

target system in any state |ψ〉, and the control system in the state |C〉
which corresponds to an equal superposition of all permutations:

|C〉|ψ〉 = 1√
n!

n!−1

∑
x=0
|x〉|ψ〉. (1)

Then, we apply the n-switch:

Sn|C〉|ψ〉 =
1√
n!

n!−1

∑
x=0
|x〉Πx|ψ〉. (2)

Now we apply the Fourier transform over Zn! to our control qudit

Fn!Sn|C〉|ψ〉 =
1
n!

n!−1

∑
x,y=0
|y〉ω−xyΠx|ψ〉. (3)

and measure the control qudit in the computational basis, with outcome
probabilities

py =
1

n!2

∥∥∥∥∥n!−1

∑
x=0

ω−xyΠx|ψ〉
∥∥∥∥∥

2

. (4)

The best way we found of simulating the n-switch gate with a fixed
circuit has query complexity O(n2). The following circuit illustrates the
idea for n = 2:

|C〉 • • • •
|ψ〉 × × × × × × × ×

|a0〉 × U0 × × U0 ×

|a1〉 × U1 × × U1 ×
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For implementations that exploit actual quantum control over the gate
ordering it is not so simple to calculate the complexity, since such im-
plementations are explicitly outside the quantum circuit formalism. Nev-
ertheless, we can formulate the notion of “gate uses” in a precise, op-
erational, way. Imagine we append, to each gate, an additional “flag”
quantum system that counts the number of times that gate is used. This
can be done in a reversible way: the j-th flag is initialized in the state |0〉j
and, whenever the unitary Uj is used, it is updated through the unitary
transformation | f 〉j → | f + 1〉j. It is easy to see that, after applying the
n-switch, the state of the flags factorizes, with each flag in the state |1〉j.
According to this definition, the total number of queries necessary to run
the algorithm is n.

Note that this agrees with the number of physical devices implement-
ing Ui that we must build.

For the case n = 2, we propose a simple interferometric implemen-
tation, where the control qubit is the polarization of a photon, and the
target |ψ〉 is some internal degree of freedom. This interferometer maps

PBS PBS

U0

U1

(α|H〉+ β|V〉)|ψ〉 to

α|H〉U1U0|ψ〉+ β|V〉U0U1|ψ〉.

The abstract idea can be generalized for larger n as follows: Both control
and target are encoded in a single system. When the system enters Rn in
mode j, it is redirected to mode σx(j) and the unitary Uσx(j) is applied to
|ψ〉. R−1

n performs the inverse permutation and sends the system to mode
j + 1 of the first router. In this way, a system entering mode 0 of the first
router, eventually exits mode n− 1 of the second router with target in the
state Πx|ψ〉.
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