
Faster identification of optimal contraction sequences for

arbitrary tensor networks

Robert N. C. Pfeifer, Jutho Haegeman, Frank Verstraete

The efficient evaluation of tensor expressions involving sums over multiple indices
is of significant importance to many fields of research, including quantum information,
quantum many-body physics, loop quantum gravity, and quantum chemistry. In quan-
tum information science the evaluation of tensor expressions is required when classically
simulating the behaviour of a quantum circuit, either for comparison with experiment or
to facilitate an understanding of the behaviour of a complex system. The inherent chal-
lenge of classically simulating a quantum system is well-understood, with the dimension
of the Hilbert space growing exponentially with system size. Less widely-recognised,
however, is the importance to computational efficiency of the order in which gates in the
circuit are either applied or combined.

In general, the task of determining the optimal sequence for evaluating multiple gate
applications is NP-hard, being isomorphic to the problem of contracting an arbitrary
tensor network [1, 2]. Equivalent problems in quantum chemistry and quantum many-
body physics have been the subject of intense study at least since 1997 [see e.g. 1–
18], and it has long been acknowledged within the quantum chemistry community that
determination of optimal evaluation sequences represents a significant bottleneck in the
development of new algorithms [3, 4, 6, 15]. The search for optimal evaluation sequences
may be automated through the use of software such as the Tensor Contraction Engine
(TCE) [3, 14], but this task represents a significant computational burden for large
quantum circuits.

In this talk we present a novel approach to the search for an optimal gate applica-
tion sequence which performs several orders of magnitude faster than existing search
algorithms, while still guaranteeing identification of an optimal evaluation sequence for
a given quantum circuit. Our work is available on arXiv [19] and includes a reference
implementation of the algorithm written in Matlab and C++ for immediate practical
application.

In its most general form, the problem of evaluating the action of a quantum circuit
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is that of evaluating the corresponding multidimensional tensor sum, for example

≡
∑

i,j,l,m,o,p
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noB

lm
pq C

okp
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as rapidly as possible subject to the constraints of available computing hardware. (A
familiar interpretation may be placed on this example by assuming that c represents
a quantum state and A, B, and C represent quantum gates.) This problem may be
seen as a generalisation of the matrix-chain multiplication problem, where a string of
matrices are to be multiplied together as efficiently as possible. Unlike the matrix-
chain multiplication problem, however, this problem cannot be solved in polynomial
time through the use of dynamic programming techniques [1].

While this optimisation problem is intrinsically multidimensional, balancing avail-
able memory and (for multi-node machines) inter-node communication delays against
the number of floating-point operations which must be performed, the predominant ap-
proach to this problem is first to identify the ideal contraction procedure which would
be performed on a single node with infinite resources, minimising the number of floating
point operations to be performed (a process known as operation minimisation), before
trading off performance against memory constraints and distributing the problem across
multiple nodes [4, 9, 10, 14, 16, 18]. Consequently, the task of operation minimisation
is of fundamental importance.

The dominant approach presently employed may be described as a breadth-first
constructive approach. In this approach, for a network of n tensors we create n sets,
denoted S1, . . . , Sn, and place all of the original tensors (gates and states) in set S1. A
set Si is then defined to contain all tensors which may be constructed by contracting
together i tensors from set S1. (For example, a tensor (cA)noklm =

∑
i,j cijklmA

ij
no is

found in S2 and is computed from tensors c and A in S1 by summing over indices i and
j.) With each tensor is also stored the minimum number of floating point operations
required to construct this tensor, and a sequence of operations which yields the tensor
for this cost.

It may be shown that the optimal contraction sequence is always a series of pairwise
tensor contractions, and thus for tensors in Si we need only consider pairwise contractions
between elements of Sj and Si−j for 1 ≤ j ≤ b i2c. The cheapest means of constructing an
element in Si is therefore the cheapest such pairwise contraction, taking into account the
computational cost of constructing the two elements of Sj and Si−j . Note that it is not
required that the elements of Sj and Si−j share any common index, and indeed there
exist quantum circuits for which the optimal evaluation sequence necessarily involves
contraction of tensor pairs not sharing any index, or sharing only indices of dimension 1.

The search is completed on iterating over all possible pairwise contractions yield-
ing Sn, with the cheapest identified construction then corresponding to the cheapest
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sequence for contracting the tensor network as a whole, and thus evaluating the action
of the quantum circuit.

We improve on this method in two areas:

• First, we recognise that there are frequently elements in intermediate sets Si, 1 <
i < n, for which the cost of computing the element exceeds the minimum cost
of evaluating the quantum circuit as a whole. By prioritising the construction
of cheaper elements in the intermediate sets, we are able to greatly restrict the
number of tensor contraction sequences which must be considered before a known
optimal-cost sequence is identified.

• Second, while it may sometimes be necessary to contract together tensors sharing
no common index as a part of the optimal contraction sequence [e.g. (AB)ab =
AaBb], we obtain a number of analytical proofs which substantially constrain the
circumstances under which this is necessary, again substantially reducing the num-
ber of sequences which need be explored.

The outcome of these refinements is a search algorithm which we describe as cheapest-
first constructive, in which sequences having a cost bounded by some number of floating
point operations ξmax are explored first, with bound ξmax being progressively increased
until the minimum-cost sequence for evaluating the entire tensor sum is obtained.

We demonstrate the usefulness of this search algorithm for a number of quantum
circuits commonly employed in condensed matter simulations, involving between 5 and
27 tensors. Our algorithm showed superior performance for all circuits examined, most
dramatically for quantum circuits involving larger numbers of gates, with results being
obtained as much as 105 times faster than the standard breadth-first algorithm:

Number of tensors Time for breadth-first (s) Time for cheapest-first (s)

5 0.0014 0.0013
6 0.0016 0.0015
7 0.0025 0.0019
9 0.0152 0.0036
11 0.0946 0.0048
19 7298 0.069
27 ∗ 36

∗ Insufficient memory to perform calculation without swapping to disk (48Gb node).

Based on these results, we hope that our algorithm will be of substantial benefit to
the scientific community, both directly to those whose work requires them to contract
tensor networks in the simulation of quantum information or condensed matter systems,
and to those implementing software for the efficient simulation of quantum systems, and
indirectly to the quantum chemists, condensed matter physicists, quantum information
scientists, and others who will make use of these software systems.
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