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The uncertainty is an intrinsic property of a quantum measurement, it

depends, however, on the choice of an initial state. Thus the following

question arises: for which states of the system before the measurement, the

uncertainty of the measurement outcomes is minimal? In other words, we

are looking for the states which are ‘most classical’ in the above sense. Let

Π := (Πj)
k
j=1 be a finite POVM in Cd representing the measurement. Then

the Shannon entropy of POVM is defined as:

H(ρ,Π) :=
k∑
j=1

η(pj(ρ,Π)),

for an initial state ρ, where the probability pj(ρ,Π) of the j-th outcome

is given by pj(ρ,Π) := tr(ρΠj) and η(x) := −x lnx (x > 0), η(0) = 0.

Thus, our main aim is to find the input states that minimize H for a given

POVM Π. This quantity (as well as its continuous analogue) has also been

considered in the context of entropic uncertainty principles, e.g. [6, 11] and

any lower bound for the entropy of measurement can be regarded as an

entropic uncertainty relation for single measurement [11].

The problem of minimizing entropy is connected with the problem of

maximization of the mutual information between ensembles of initial states

(classical-quantum states) and the POVM Π. For an ensemble V := {πi, ρi}li=1

of initial states ρi with a priori probabilities πi the mutual information be-

tween V and Π is given by

I(V,Π) :=
l∑

i=1

η

 k∑
j=1

Pij

+
k∑
j=1

η

(
l∑

i=1

Pij

)
−

l∑
i=1

k∑
j=1

η(Pij),

where Pij = πiTr(ρiΠj) for i = 1, . . . , l and j = 1, . . . , k. The problem of

maximization of I(V,Π) consists of two dual aspects [9, 10]: maximization

over all possible measurements, providing the ensemble V is given, see, e.g.

[8, 5], and (less explored) maximization over ensembles, when the POVM

Π is fixed [1, 12]. We are interested in the second one, which allows us to

answer the question how informative the measurement is, by looking for the
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quantity called informational power [1]:

W (Π) := sup
V
I(V,Π).

An ensemble that maximizes the mutual information is called maximally

informative for Π. In fact, it is enough to take into consideration ensembles

consisting of pure states only [1, 12]. What is more, if Π is group-covariant

(with respect to an irreducible projective unitary-antiunitary representation

π of a group G), then the maximizer can be found in the set of group-

covariant ensembles, i.e. ensembles of the form V (ρ) := {|G|−1, π∗(g)(ρ)}g∈G,

where ρ is a pure state [12]. Additionally, the problems of finding the in-

formational power of group-covariant measurement and of minimizing the

entropy of such measurement are equivalent since in such situation we have

I(V (ρ),Π) = ln |G| −H(ρ,Π) =: H̃(ρ,Π),

where H̃(ρ,Π) is the relative entropy of Π with respect to the uniform dis-

tribution, i.e. the relative entropy (or Kullback-Leibler divergence) of the

probability distribution of measurement outcomes with respect to the uni-

form distribution. Note that H̃ measures non-uniformity of the distribu-

tion of the measurement outcomes and ‘can be interpreted as a measure of

knowledge, as against uncertainty’ [15]. Indeed, the greater H̃ is, the more

we know about the measurement outcomes.

The formula for mutual information, which includes the function η, makes

the problem of finding the global maximizers analytically quite hard. So far

the answer has been given only in the following cases: for tetrahedral POVM

(2-dimensional SIC-POVM) [12], for 2-dimensional real-symmetric POVMs

[1] and for 2-dimensional highly symmetric POVMs [14].

In the poster we present the solution for 3-dimensional group covariant

(Weyl-Heisenberg) SIC-POVMs [16]. Obviously, the assumption of group co-

variance is not a huge restriction since all known SIC-POVMs in dimension

3 are of this form. We give a characterization of group covariant maximally

informative ensembles in both geometric and algebraic terms. It turns out

that such ensemble arises from the input state orthogonal to a subspace

spanned by three linearly dependent vectors defining a SIC-POVM (geo-

metrically) or from an eigenstate of certain Weyl’s matrix (algebraically).

The existence of such linear dependencies is guaranteed by group covari-

ance [4]. Moreover, we show that these maximally informative ensembles

can consist of a single eigenbasis of certain Weyl’s matrix, three mutually

unbiased bases (MUBs) or four MUBs.
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We state also an opposite problem, i.e. for which (pure) states of the sys-

tem before the measurement, the uncertainty of the measurement outcomes

is maximal? The entropy of a rank-1 normalized POVM Π = {Πj}kj=1 is

obviously maximal for maximally mixed state ρ∗ = (1/d)I since then the

measurement outcomes are uniformly distributed. However, if we consider

the entropy of the measurement restricted to the pure states, the question,

which pure states maximize the entropy of the measurement and how large

can it be, is not so trivial. The meaning of this question is following: since

the entropy is minimized on the set of pure states, it would be interesting

to know, how badly can we end by choosing initially any pure state.

While stating the problem of minimization of the entropy of POVM we

said that we are looking for the states that are ‘most classical’ (with reference

to a given POVM). Thus the question set above may be interpreted as asking

which pure states are ‘most quantum’ with respect to a given POVM. Similar

problems, concerning the maximal ‘quantumness’, has been already stated

in the context of coherent states. Giraud et al. [7] analyzed the quantity

defined as the Hilbert-Schmidt distance between a given state and the convex

hull of coherent states, while Bæcklund and Bengtsson [2, 3] addressed the

problem of the Wehrl entropy maximization.

We show that the minimum relative entropy (and so maximum entropy)

over pure states of a SIC-POVM Π = {(1/d)|φj〉〈φj |}d
2

j=1 is always attained

at the states |φj〉〈φj | (j = 1, . . . , d2) constituting this SIC-POVM and

min
ρ∈P(Cd)

H̃(ρ,Π) = H̃(|φj〉〈φj |,Π) = ln d− d− 1

d
ln(d+ 1)

d→∞−−−→ 0.

We also compare this value with the average relative entropy and an upper

bound for relative entropy of SIC-POVMs provided by [13, Prop. 6].

The main idea of our method in both cases is to replace the function H

by a real-valued polynomial function P that interpolates H from below (or

from above in the case of maximization) and agrees with H exactly at the

points supposed to be global minimizers (or maximizers, resp.). Now it is

enough to show that these points are also global minimizers (maximizers)

for P . The interpolation of H is done by applying the Hermite interpolation

to the function η. What is crucial here is that we interpolate η from below

(from above). Some problems with finding the global minimizers of P could

appear if P was of high degree, however, since in both cases the degree of

P is at most 2 and every SIC-POVM is a projective 2-design, P must be

constant on pure states.



4

References

[1] M. Dall’Arno, G.M. D’Ariano, M.F. Sacchi, Informational power of quantum mea-

surement, Phys. Rev. A 83, 062304 (2011).

[2] A. Bæcklund, Maximization of the Wehrl Entropy in Fi-

nite Dimensions MSc Thesis, KTH (2013) available online at

http://www.kiko.fysik.su.se/en/thesis/AnnaWehrl.pdf

[3] A. Bæcklund, I. Bengtsson, Four remarks on spin coherent states. arXiv:1312.2427

[quant-ph]

[4] H.B. Dang, K. Blanchfield, I. Bengtsson, D.M. Appleby, Linear dependencies in Weyl-

Heisenberg orbits, Quantum Inf. Process. 12 3449-3475 (2013)

[5] E.B. Davies, Information and quantum measurement, IEEE Trans. Inf. Theory 24,

596 (1978).

[6] D. Deutsch, Uncertainty in quantum measurements, Phys. Rev. Lett. 50, 631–633

(1983)

[7] O. Giraud, P. Braun, D. Braun, Quantifying quantumness and the quest for Queens

of Quantum. New J. Phys. 12, 063005 (2010)

[8] A.S. Holevo, Bounds for the quantity of information transmitted by a quantum com-

munication channel, Probl. Inf. Transm. 9, 177–183 (1973)

[9] A.S. Holevo, Quantum systems, channels, information. A mathematical introduction,

De Gruyter, Berlin (2012)

[10] A.S. Holevo, Information capacities of quantum measurement channels, Phys. Scr.

T153, 013034 (2013)

[11] M. Krishna, K.R. Parthasarathy, An entropic uncertainty principle for quantum mea-
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