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We consider the natural extension of two-player nonlocal games to an arbitrary number of players.
In an m-player nonlocal game G, m players receive respective questions x1, . . . , xm, chosen according
to some joint probability distribution, and the task of the m players is to provide “good” answers
a1, . . . , am, without communicating with each other. The players are said to win the game if the
given answers jointly satisfy some specific property with respect to the given questions. The value
of a given game is defined to be the maximal winning probability of the players. One distinguishes
between the classical, the quantum, and the non-signaling value, depending on whether the players
are restricted to be classical, may share entanglement and do quantum measurements, or are allowed
to make use of any hypothetical strategy that does not violate non-signaling.

An important question for such nonlocal games is their behavior under parallel repetition. For
two-player nonlocal games, it is known that both the classical and the non-signaling value of any
game converges to zero exponentially fast under parallel repetition, given that the game is non-trivial
to start with (i.e., has classical/non-signaling value < 1). Very recent results [DSV13, CS13, JPY13]
show similar behavior of the quantum value of a two-player game under parallel repetition. For
nonlocal games with three or more players, very little is known up to present on their behavior
under parallel repetition; this is true for the classical, the quantum and the non-signaling value.

Our Results. We show a parallel-repetition and a concentration theorem for the non-signaling
value of m-player games for any m, for a large class of games. The class of games to which our
result applies consists of all multi-player games with complete support, meaning that all possible
combinations of questions x1, . . . , xm must have positive probability of being asked. This class of
games in particular includes all free games, in which the questions to the different players are chosen
independently. Specifically, we prove that if the original game G has a non-signaling value vns(G) < 1,
then the non-signaling value vns(Gn) of the n-fold parallel repetition of G is exponentially small
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in n: vns(Gn) ≤ v̄ns(G)n for some v̄ns(G) < 1. Stronger than that, we prove that the probability of
winning more than (vns(G) + δ) · n parallel repetitions is exponentially small in n (for any δ > 0).

We point out that our parallel-repetition result for multi-player games (with complete support)
is of a weaker nature than the parallel-repetition results for classical two-player games, in that in
our result the constant v̄ns(G) depends on the complete description of the game G, and not just on
its non-signaling value vns(G). Still, our result is the first that shows a parallel-repetition result for
a large class of m-player games with m > 2 for one of the three values (the classical, quantum or
non-signaling) of interest.

For proving our results, we borrow and extend tools from [Hol09] and [Rao11], and combine
them with some new technique. The new technique involves considering strategies that are almost
non-signaling, meaning that the non-signaling properties only hold up to some small error. We then
show (Proposition 18 in [BFS14]) and use in our proof that the non-signaling value of a game is
robust under extending the quantification over all non-signaling strategies to all almost non-signaling
strategies.

Related Work The problem of parallel repetition is somewhat understood in the case of two
players, where m = 2. Indeed, Raz showed in his celebrated parallel repetition theorem [Raz98] that
if the classical value of a two-player game G is vc(G) < 1 then the classical value vc(Gn) of the n-fold
parallel repetition of G satisfies vc(Gn) ≤ v̄c(G)n/ log(s), where s denotes the number of possible
pairs of answers a1 and a2, and v̄c(G) < 1 only depends on vc(G). Raz’s result was improved and
simplified by Holenstein [Hol09], who gave an explicit and tighter dependency between v̄c(G) and
vc(G), namely v̄c(G) = 1− 1

6000(1− vc(G))3. Holenstein also showed that a similar result holds for
the non-signaling value of any two-player game: vns(Gn) ≤ v̄ns(G)n for v̄ns(G) = 1− 1

6400(1−vns(G))2.
Parallel-repetition results for the quantum value of two-player games were first derived for certain
special classes of games, like XOR-games [CSUU08] or unique games [KRT10], or for a non-standard
parallel repetition where the different repetitions of the original game are intertwined with modified
versions of the original game [KV11]. Recently, several results about the parallel repetition of more
general quantum games have been obtained [DSV13, CS13, JPY13].

There are further improvements to the above results on two-player games. For instance,
Rao [Rao11] showed a concentration result for the classical value of any two-player game, saying that
the probability to win more than (vns(G) + δ) · n out of the n repetitions is exponentially small (for
any δ > 0).1 Furthermore, he improved the bound on the classical value under parallel repetition
for projection games. A similar improvement on the bound on the classical value under parallel
repetition was given by Barak et al. [BRR+09] for free games, together with a further improvement,
namely a strong parallel repetition theorem (meaning that vc(Gn) ≤ vc(G)Ω(n)), for free projection
games.

When considering multi-player nonlocal games with strictly more than 2 players, to the best
of our knowledge, very little is known about their behavior under parallel repetition, except for
trivial cases. This applies to the classical, the quantum, and the non-signaling value. In [Ros10],
Rosen proved a parallel-repetition result for more than 2 players. However, a somewhat unnatural
definition of multi-player non-signaling correlations is used where no m− 1 players together can
signal to the remaining player. In our (standard) model, one demands that any subset (of arbitrary
size) of players cannot signal to the remaining players.

1Rao claims the concentration result only for the classical value, but the same techniques also apply to the
non-signaling value.

2



Another result about multi-player games is by Briët et al. [BBLV13] about the related question
of XOR repetition. They show the existence of a 3-player XOR game whose classical value of the
XOR repetition is bounded from below by a constant (independent of the number of repetitions).
Hence, XOR repetition does not hold for this game (but parallel repetition might still hold). Our
result does not imply anything about those games, because the non-signaling value of XOR games
is always 1.

Relevance to the QIP community Non-local games have become a key tool for quantifying the
fundamental differences between the classical and quantum world (as well as their generalizations).
The behavior of non-local games under parallel repetition is of fundamental importance. Our work
gives the first results for the case of more than two players.

Possible applications of our results are of quantum-cryptographic nature where it is common
practice to amplify the hardness of a basic task by parallel repetition. A likely scenario for
applying our results (and our original motivation to study the problem) is position-based quantum
cryptography [BCF+11, BFSS13], in the spirit of a recent result on parallel repetition of a so-called
monogamy-of-entanglement game [TFKW13]. In particular, the attack scenario on a particular
(one-dimensional) position-verification protocol can be seen as a non-local 3-party game between
one of the verifiers and the two attackers. If one finds a protocol for which the non-signaling value
of such a 3-player game is strictly smaller than 1, a parallel-repetition result will allow to amplify
the gap in success probability between the honest and dishonest scenario arbitrarily. However,
as our result only applies to a restricted class of games, we were not able yet to apply it in this
cryptographic context. The problem is that there is a promise on the input distribution (namely
that the two attackers always receive the same classical input), and hence, these games fall outside
of the class we can analyze with our techniques.

Conclusion and Open Questions This article initiates the investigation of the behavior of
multi-player nonlocal games under parallel repetition. For the case of the non-signaling value, we
provide a concentration bound for games with complete support. Our results might serve as a
stepping stone for the investigation of the quantum and classical values, with direct applications to
quantum cryptography, for instance in position-based cryptography. Other interesting questions
include improving the rate of repetition (e.g. by making it independent of the minimal probability
that any question is asked).
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and José D. P. Rolim, editors, APPROX-RANDOM, volume 5687 of Lecture Notes in
Computer Science, pages 352–365. Springer, 2009.

[CS13] A. Chailloux and G. Scarpa. Parallel Repetition of Entangled Games with Exponential
Decay via the Superposed Information Cost. arxiv:1310.7787, 2013.

[CSUU08] Richard Cleve, William Slofstra, Falk Unger, and Sarvagya Upadhyay. Perfect parallel
repetition theorem for quantum xor proof systems. Computational Complexity, 17(2):282–
299, 2008.

[DSV13] I. Dinur, D. Steurer, and T. Vidick. A parallel repetition theorem for entangled projection
games. arxiv:1310.4113, 2013.

[Hol09] Thomas Holenstein. Parallel repetition: Simplification and the no-signaling case. Theory
of Computing, 5(1):141–172, 2009.
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