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We investigate entropic uncertainty relations for two or more binary measurements. We show
that the effective anti-commutator is a useful measure of incompatibility and gives rise to strong
uncertainty relations. Since the effective anti-commutator can be certified device-independently it
leads us to device-independent uncertainty. Our relations, expressed in terms of conditional Rényi
entropies, turn out to be robust (they give non-trivial bounds on the uncertainty whenever deter-
ministic behaviour cannot be ruled out) and strong (e.g. for the well-studied case of two projective
measurements on a qubit we find an analytic expression that improves on the celebrated bound
due to Maassen and Uffink [Phys. Rev. Lett. 60, 1103 (1988)] and some recent bounds based on
the majorisation approach). In addition to being a useful tool towards robust, device-independent
quantum cryptography beyond quantum key distribution (QKD), our results are also interesting
from the technical point of view since the methods used rely solely on standard matrix analysis and
differ substantially from the techniques usually employed in deriving uncertainty relations.
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I. SUMMARY OF RESULTS

In the device-independent scenario, the honest parties are required to perform a certain task using de-
vices whose internal working is not specified (in the worst case scenario they have been supplied by an
adversary) [ABG+07, PAB+09]. Therefore, the cryptographic protocol must be supplemented by some
tests to convince ourselves that the device behaves as expected. This is closely related to the concept of
self-testing [MY98, MY04, MM11].

In most cryptographic protocols proving security amounts to showing that there is a secret that the
dishonest party is ignorant about, or, alternatively, that the uncertainty of the secret given his knowledge
is high. It is clear that uncertainty relations might come in useful in proving such statements and, indeed,
they constitute an important ingredient of many security proofs. Unfortunately, no uncertainty relation can
be stated if we do not know what the device is actually doing. In fact, most standard uncertainty relations
are stated under the assumption that we know the exact specification of the device.

To overcome this issue we need to develop uncertainty relations that do not require the exact specification
of the device and rely only on simple properties which can be verified experimentally. This is the essence
of device-independent uncertainty. This approach has been successful in proving security of quantum key
distribution [VV14, LPT+13] and randomness expansion [VV12, MS14].

The goal of current work is to develop a robust framework for device-independent uncertainty. While
the case of two measurements has received significant attention essentially nothing is known beyond that.
Our findings strengthen the existing results for two measurements and derive novel, device-independent
uncertainty relations for more than two measurements. For simplicity we consider measurements with
two outcomes. These have an equivalent description as binary observables, i.e. Hermitian operators whose
eigenvalues are ±1 (assuming the measurements are projective; our techniques also apply to generalised ob-
servables, please refer to the full paper for details). It is known that for binary observables anti-commutation
(in the operator sense) implies incompatibility and gives rise to strong uncertainty relations (e.g. σx and σz
are the most incompatible binary measurements on a qubit). While the case of perfect anti-commutation
is well understood [WW08] nothing is known about the case of partial (or approximate) anti-commutation.
Since for most applications we need uncertainty relations which are robust against small perturbations we
turn to study observables which only partially anti-commute as quantified by their pairwise effective anti-
commutator. Effective anti-commutators turn out to be appealing objects to study since they can be certified
in a device-independent fashion [TH13, LPT+13].
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Fig. 1: The allowed expectation values of two
observables with a fixed effective
anti-commutator, ε ∈ {0, 0.5, 0.9}.
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Fig. 2: Various lower bounds on H(A|K) as a
function of the overlap, c (qMU : Maassen-Uffink,
qmaj : majorisation bound, qac : anti-commutation
bound, qopt : largest, state-independent bound;

details in the text).

In our work we propose a procedure that allows to quantify uncertainty generated by an untrusted device.
In our setting we are given two devices: the primary device, whose uncertainty we want to certify, and an
auxiliary device which will be used for testing purposes only. We assume that both devices are memoryless.
The procedure is as follows.

1. We use the devices to play a non-local game proposed by Slofstra [Slo11].

2. From the observed statistics using the main result of [TH13, LPT+13] we derive bounds on the effective
anti-commutators of the measurements performed by the primary device.

3. We show that bounds on the effective anti-commutators imply lower bounds on the entropic uncertainty
of these observables (our contribution).

Our contribution is a stepping stone towards robust device-independent security proofs and we hope it
will find numerous applications in quantum cryptography. For example the techniques used for proving
security of QKD cannot be directly applied to the problem of device-independent two-party cryptography
(in the bounded [DFSS05, DFR+07] or noisy [WST08, KWW12] storage model). However, the success of
uncertainty-based techniques in QKD suggests that device-independent uncertainty might also be useful in
the two-party scenario.

We believe our results are of interest to the quantum cryptography community for several reasons. First
of all, the problem and final results are simple to state and understand (in particular, multiple parts of
the proof and the solution admit a simple geometrical interpretation, see Section II for an example). Our
results are robust which means they give a lower bound on the uncertainty for an arbitrary set of binary
measurements and the lower bound is strictly positive whenever any Bell violation is observed. (Note that
this is the best one can hope for since if no violation is observed, the statistics can be reproduced by local
hidden variables and, hence, no uncertainty can be guaranteed.) Moreover, our bounds are strong: for the
case of two projective measurements on a qubit we provide an analytic expression that outperforms the
celebrated bound due to Maassen and Uffink [MU88] and some recent bounds based on the majorisation
approach [FGG13, PRŻ13] (and more recently [RPŻ14]). See Section II for an explicit comparison. Last but
not least, our uncertainty bounds can be stated in a closed-form and are simple to evaluate (in particular,
no numerical optimisation is required).

From the technical point of view our proof is concise and accessible since it only relies on standard tools
from matrix analysis. Moreover, since we do not rely on Jordan’s lemma (which leads to a reduction to qubits
but only applies to two measurements), we can treat any (finite) number of observables. For a meaningful
comparison we must, however, restrict ourselves to the well-studied case of two measurements since very few
results are known beyond that.
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II. EXAMPLE: UNCERTAINTY FOR TWO MEASUREMENTS

Consider two binary observables denoted by A0 and A1 (whose outcomes are labelled by ±1) and sup-
pose that our system is in the state ρ. The effective anti-commutator of these observables equals ε =
1
2 tr({A0, A1}ρ), where {A0, A1} = A0A1 + A1A0 is the anti-commutator. The effective anti-commutator is
a real number and |ε| ≤ 1. We expect small effective anti-commutator (in modulus) to be a signature of
incompatibility (e.g. for σx and σz we have ε = 0 independent of the state). We prove that this is indeed
the case by showing that the effective anti-commutator imposes a constraint on the probability distributions
of the observables. Let gk = tr(Akρ) be the expectation value of Ak (note that for two outcomes the ex-
pectation value determines the distribution uniquely: e.g. gk = 0 corresponds to the uniform distribution,
while gk = ±1 corresponds to a deterministic one) and define the (column) vector of expectation values
g = (g1, g2). We show that if the effective anti-commutator equals ε then g must satisfy

ggT ≤
(

1 ε
ε 1

)
,

which geometrically corresponds to lying inside an ellipse as shown in Fig. 1. For ε = 0 we obtain a
circle, which becomes gradually elongated towards the corners as ε increases. Note that ε > 0 (ε < 0)
encourages the two expectation values to be correlated (anti-correlated), which results in an ellipse stretched
along the primary (secondary) diagonal. The deterministic points, corresponding to the corners, are only
allowed for |ε| = 1. Note that this neat result generalises to the case of multiple observables: the vector of
expectation values of M measurements must lie inside an M -dimensional ellipsoid specified by the pairwise
anti-commutators.

To obtain uncertainty in terms of entropies one needs to minimise the entropy of choice over the ellipse.
While solving the optimisation problem exactly might be difficult it is possible to obtain bounds (which
turn out to be quite strong). As an example suppose we want to obtain a bound q on the average of
the Shannon entropies of the two measurements (which is equivalent to the conditional Shannon entropy),
H(A|K) = 1

2 (H(A0) +H(A1)) ≥ q. Our approach gives

qac(ε) =
1

2
h

(
1 +

√
|ε|

2

)
,

where h(p) = −p log p − (1 − p) log(1 − p) is the binary entropy. Although effective anti-commutators
play a central role in our work, it is more common to state uncertainty relations in terms of the over-
lap, which for rank-1 projective measurements corresponding to orthogonal bases {|xj〉} and {|yj〉} equals
c = maxjk |〈xj |yk〉|2. In general the relationship between the two is non-trivial but for rank-1 projective
measurements on a qubit we have c = (1 + |ε|)/2 which allows to rewrite our bound as a function of the
overlap

qac(c) =
1

2
h

(
1 +
√
2c− 1

2

)
.

Now, we can compare it with the Maassen-Uffink and majorisation bounds:

qMU(c) = −
1

2
log c,

qmaj(c) =
1

2
h

((
1 +
√
c
)2

4

)
.

For comparison Fig. 2 also shows the largest state-independent lower bound denoted by qopt(c) (for c & 0.7
we have an analytic expression due to Ghirardi et al. [GMR03], while for c . 0.7 one needs to resort to
numerics).
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