
Quantum metrology: Heisenberg limit with bound entanglement�. Czekaj,1, 2 A. Przysi�»na,1, 2 M. Horodeki,1, 2 and P. Horodeki3, 21Institute of Theoretial Physis and Astrophysis,University of Gda«sk, 80-952 Gda«sk, Poland2National Quantum Information Centre in Gda«sk, 81-824 Sopot, Poland3Faulty of Applied Physis and Mathematis,Gda«sk University of Tehnology, 80-233 Gda«sk, PolandAbstrat Quantum metrology promises for a huge boost in the preision of parameters estimation.However, it requires genuine entanglement and it seems to be extremely sensitive to noise. It isstill not known what type of entanglement is required for the sub-shot noise preision in quantummetrology (if the probe state should ontain distillable entanglement, if it should violates loalrealism, et). Here we address this problem providing a ounterintuitive example of a family ofbound entangled states whih an be used in quantum enhaned metrology. We show that thesestates give advantage as big as maximally entangled states and asymptotially reah the Heisenberglimit. Moreover, entanglement of the applied states is very weak whih is re�eted by its so alledunlokability property. Finally, we �nd instanes where behaviour of Quantum Fisher Informationreports presene of bound entanglement while a well-known lass of strong orrelation Bell inequalitydoes not. The last result refers to the question if violation of loal realism is required in quantumenhaned metrology. (Tehnial version: arXiv:1403.5867)Introdution Estimation of a physial parameter is an important goal in many areas of siene[1℄. Obviously, we want to obtain the highest possible auray of that estimation. We an improvethe auray repeating the experiment multiple times or, equivalently, make multipartite probeto interat with the system. In the quantum world there is another possibility of inreasing theauray: prepare the probe in a partiular quantum state i.e. in the entangled state. To be moreonrete, for a lassial probe that ontains n partiles (we an also onsider it as a measurementperformed n times) auray sales like 1/√n. That is so alled Shot-Noise Limit (SNL). However,if the system is in partiular entangled state, then auray an be improved up to 1/n. Thislimit, alled Heisenberg Limit (HL) gives us the best what we an get that is allowed by quantummehanis. Both of these bounds an be derived from quantum Cramer-Rao bound and QuantumFisher information (QFI) [2�6℄.Measurement resulting in improvement below shot-noise limit is a signature of quantum entan-glement in the system, that is: quantum metrology tehnique may serve as a witness of genuinequantum orrelations in the system. Indeed, how powerful it may be, we shall see below.It is known that genuine multipartite quantum entanglement is neessary to surpass the SNL (see[8℄), however not every entangled state gives the same improvement, and among entangled statesthere are also states that are not suitable for quantum metrology i.e. they do not surpass SNL. Inpartiular quantum saling is hard to obtain in ase of entangled states with high noise fator (see[7℄) whih we have to deal with in realisti experiments where deoherene and preparation errorsare present.States on whih we fous in this paper belong to a group of states with suh high noise fator thatmakes them unusable for most of the quantum information tasks. These highly mixed states arebound entangled (BE) [9, 10℄. Bound entangled states are those from whih no pure entanglementan be distilled when only loal operations and lassial ommuniation (LOCC) are available. Thesu�ient ondition for entangled state to be bound entangled is its positive partial transposition[9, 11℄. Among multipartite bound entangled states we distinguish unlokable and non-unlokableones. Unlokable BE states are those, in whih grouping some parties together and allowing them to



2perform olletive quantum operations, makes distillation of pure entanglement between two otherparties outside the group possible. Non-unlokable BE states are those in whih we annot obtainpure entangled state by these means. One may say that entanglement is "more bound" there.Impossibility of pure entanglement distillation makes BE states not useful for many quantuminformation and ommuniation tasks suh as quantum teleportation or dense oding. In ase ofmetrology, no instane of usefulness of BE states was known so far. In [12℄ the authors relate QFIand BE states and show that for ertain BE states, averaged Fisher Information is higher than forseparable states. However, even though the relation with averaged QFI was given, the usability ofBE in ase of standard formulation of quantum metrology (i.e. with known interation between asystem and a probe) remained an open question.Our motivation here is the lak of knowledge whih states are useful for the standard quantummetrology and whih are not. Fitness of BE for purposes of quantum information theory (espeiallyin the ontext of quantum information proessing) is also not fully reognized yet. For these reasonswe fous on the long-standing question "Do, among bound entangled states, there exist any examplesthat beat the shot-noise limit?". Intuition suggests that the high degree of noise of BE should bethe reason of the negative answer. It is, in partiular, espeially tempting to expet suh answer inlasses of multiqubit states, the entanglement of whih an not be unloked.Results We investigate a lass of mixed states that are GHZ-diagonal and present the �rst, toour knowledge, example of bound entangled states whih have advantage over produt states inmetrology of phase shift around z-axis. What is more, in the disussed states, the entanglementannot be unloked. Our family of states approahes Heisenberg limit asymptotially (an2 saling ofthe QFI with a ≥ 1
4 ). We ompare QFI with multipartite Bell inequalities (as a tool of entanglementdetetion) and �nd that in some ases the sub-shot noise reports entanglement even when the well-known rih lass of orrelation Bell inequalities do not.One may ask, how our states, even though highly noisy, an surpass the no-go result [7℄ aordingto whih quantum saling annot be obtained in presene of generi loal noise. The reason is thedi�erent struture of the noise in our ase. In partiular, our states do not have full rank, unlike inthe ase of generi loal noise.We onsider a lass of n-qbit states that are diagonal in the generalized GHZ-basis (the oe�-ients λ+

i , λ
−
i will be desribed later):
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) follows diretlyfrom the normalisation ondition.



3The exemplary state ρn,k with n = 4, k = 2 is presented below
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∣ (3)where I1 = {0, 1, 2, 7} and I2 = {3, 4, 5, 6}.Proposition 1. For any n, k the state ρn,k passes positive partial transpose test (PPT) with respetto loal transposition on any single qubit system and, as suh, it is bound entangled.We study usefulness of states ρ for quantum metrology in terms of Quantum Fisher Information(QFI) whih quanti�es the amount of information on unknown parameter θ that may be extratedby optimal measurements. In ase of multipartite separable states, maximal value of QFI saleslinearly with the system size (SNL). This is re�eted by the separability ondition for quantumFisher information FQ (see [12℄), i.e. for any separable state ρsep, it holds:
FQ(ρsep) ≤ n. (4)On the ontrary, the highest saling i.e. quadrati one (HL) FQ(ρ) ≈ n2 may be ahieved only byentangled states ρ.We obtained that for k = 2 and n ≥ 7 (k = 3 and n ≥ 8 respetively) FQ(ρn,k) > n. Moreoverwe get:Proposition 2. Quantum Fisher Information FQ(ρn,k) satis�es:

FQ(ρn,k) ≥ (n− 2k)2
k

n+ 1
(5)for any n and k < n

2 . In partiular putting k(n) = an (a < 1
2) it follows the asymptoti behaviour

lim
n→∞

FQ(ρn,k(n))

a(1− 2a)n2
≥ 1. (6)We �nd that for the states ρn,k, the e�ieny of Fisher information separability test does notoinide with the e�ieny of some strong Bell inequality tests. We have hosen the family of all

n-qubit-orrelation Bell inequalities with 2n−1 × 2n−1 × ... × 2n−2 × ... × 2 settings per sides (see[14℄, [15℄), whih an be written as the simple inequality
C(n)(ρ) ≤ 1 (7)where C(n) is a speial (optimised) funtion of the orrelation tensor of the state. The above anbe seen as a neessary ondition for separability of any n-qubit state. Remember that anotherneessary ondition for separability of n qubits is the shot-noise limit bound. We have alulatedthe upper bound for the fator (7) for some states from the lass ρn,k. We obtained that for

k = 2 and k = 3 and n respetively from the set {7, 8} and {8, 9, 10}, Fisher Information riterionoutperform orrelation Bell inequality ondition (7), i.e. it detets entanglement while orrelationondition indiate hidden variable model (see the Figure 3 for the details).The above observation suggests need of deep study of nonloality in the ontext of metrologywhih was, to our knowledge, not pursued so far. In partiular one of the questions that maybe raised is possible role of metrology as a neessary ondition for standard, or even weaker i.e.sequential, nonloality.[1℄ Giovannetti, V., Lloyd, S. & Maone, L. Advanes in quantum metrology. Nat. Phot. 5, 222 (2011).
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FIG. 1: Preisely alulated QFI and the limit it ahieves in the in�nity for two di�erent values of k. Blueand purple lines show how the Fn,k
Q hange for k = 3 and k = 2 respetively. Dashed lines depit asymptotes.Shaded area orrespond to sub-shot noise auray.
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FIG. 2: Asymptoti behaviour of the quantum Fisher information for ρn,k(n) states in the ase when k = an.Dependene on n is alulated for three di�erent values of a: 1/8 (red), 1/4 (purple) and 3/8 (blue). Shadedarea orrespond to sub-shot noise auray.
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FIG. 3: Comparison of Fisher Information riterion and orrelation ondition in the power of entanglementdetetion. Here we plotted FQ/FCl and C(n) for ρn,2. Tests detet entanglement when their values exeed
1. The most interesting region is where Fisher Information riterion detet entanglement for states withhidden variable model (i.e. FQ/FCl > 1 and C(n) < 1, see main text). For omparison we also plot value ofKlyahko-Mermin (KM) inequality. For analysed states it performs muh worse than C(n).


