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t Quantum metrology promises for a huge boost in the pre
ision of parameters estimation.However, it requires genuine entanglement and it seems to be extremely sensitive to noise. It isstill not known what type of entanglement is required for the sub-shot noise pre
ision in quantummetrology (if the probe state should 
ontain distillable entanglement, if it should violates lo
alrealism, et
). Here we address this problem providing a 
ounterintuitive example of a family ofbound entangled states whi
h 
an be used in quantum enhan
ed metrology. We show that thesestates give advantage as big as maximally entangled states and asymptoti
ally rea
h the Heisenberglimit. Moreover, entanglement of the applied states is very weak whi
h is re�e
ted by its so 
alledunlo
kability property. Finally, we �nd instan
es where behaviour of Quantum Fisher Informationreports presen
e of bound entanglement while a well-known 
lass of strong 
orrelation Bell inequalitydoes not. The last result refers to the question if violation of lo
al realism is required in quantumenhan
ed metrology. (Te
hni
al version: arXiv:1403.5867)Introdu
tion Estimation of a physi
al parameter is an important goal in many areas of s
ien
e[1℄. Obviously, we want to obtain the highest possible a

ura
y of that estimation. We 
an improvethe a

ura
y repeating the experiment multiple times or, equivalently, make multipartite probeto intera
t with the system. In the quantum world there is another possibility of in
reasing thea

ura
y: prepare the probe in a parti
ular quantum state i.e. in the entangled state. To be more
on
rete, for a 
lassi
al probe that 
ontains n parti
les (we 
an also 
onsider it as a measurementperformed n times) a

ura
y s
ales like 1/√n. That is so 
alled Shot-Noise Limit (SNL). However,if the system is in parti
ular entangled state, then a

ura
y 
an be improved up to 1/n. Thislimit, 
alled Heisenberg Limit (HL) gives us the best what we 
an get that is allowed by quantumme
hani
s. Both of these bounds 
an be derived from quantum Cramer-Rao bound and QuantumFisher information (QFI) [2�6℄.Measurement resulting in improvement below shot-noise limit is a signature of quantum entan-glement in the system, that is: quantum metrology te
hnique may serve as a witness of genuinequantum 
orrelations in the system. Indeed, how powerful it may be, we shall see below.It is known that genuine multipartite quantum entanglement is ne
essary to surpass the SNL (see[8℄), however not every entangled state gives the same improvement, and among entangled statesthere are also states that are not suitable for quantum metrology i.e. they do not surpass SNL. Inparti
ular quantum s
aling is hard to obtain in 
ase of entangled states with high noise fa
tor (see[7℄) whi
h we have to deal with in realisti
 experiments where de
oheren
e and preparation errorsare present.States on whi
h we fo
us in this paper belong to a group of states with su
h high noise fa
tor thatmakes them unusable for most of the quantum information tasks. These highly mixed states arebound entangled (BE) [9, 10℄. Bound entangled states are those from whi
h no pure entanglement
an be distilled when only lo
al operations and 
lassi
al 
ommuni
ation (LOCC) are available. Thesu�
ient 
ondition for entangled state to be bound entangled is its positive partial transposition[9, 11℄. Among multipartite bound entangled states we distinguish unlo
kable and non-unlo
kableones. Unlo
kable BE states are those, in whi
h grouping some parties together and allowing them to



2perform 
olle
tive quantum operations, makes distillation of pure entanglement between two otherparties outside the group possible. Non-unlo
kable BE states are those in whi
h we 
annot obtainpure entangled state by these means. One may say that entanglement is "more bound" there.Impossibility of pure entanglement distillation makes BE states not useful for many quantuminformation and 
ommuni
ation tasks su
h as quantum teleportation or dense 
oding. In 
ase ofmetrology, no instan
e of usefulness of BE states was known so far. In [12℄ the authors relate QFIand BE states and show that for 
ertain BE states, averaged Fisher Information is higher than forseparable states. However, even though the relation with averaged QFI was given, the usability ofBE in 
ase of standard formulation of quantum metrology (i.e. with known intera
tion between asystem and a probe) remained an open question.Our motivation here is the la
k of knowledge whi
h states are useful for the standard quantummetrology and whi
h are not. Fitness of BE for purposes of quantum information theory (espe
iallyin the 
ontext of quantum information pro
essing) is also not fully re
ognized yet. For these reasonswe fo
us on the long-standing question "Do, among bound entangled states, there exist any examplesthat beat the shot-noise limit?". Intuition suggests that the high degree of noise of BE should bethe reason of the negative answer. It is, in parti
ular, espe
ially tempting to expe
t su
h answer in
lasses of multiqubit states, the entanglement of whi
h 
an not be unlo
ked.Results We investigate a 
lass of mixed states that are GHZ-diagonal and present the �rst, toour knowledge, example of bound entangled states whi
h have advantage over produ
t states inmetrology of phase shift around z-axis. What is more, in the dis
ussed states, the entanglement
annot be unlo
ked. Our family of states approa
hes Heisenberg limit asymptoti
ally (an2 s
aling ofthe QFI with a ≥ 1
4 ). We 
ompare QFI with multipartite Bell inequalities (as a tool of entanglementdete
tion) and �nd that in some 
ases the sub-shot noise reports entanglement even when the well-known ri
h 
lass of 
orrelation Bell inequalities do not.One may ask, how our states, even though highly noisy, 
an surpass the no-go result [7℄ a

ordingto whi
h quantum s
aling 
annot be obtained in presen
e of generi
 lo
al noise. The reason is thedi�erent stru
ture of the noise in our 
ase. In parti
ular, our states do not have full rank, unlike inthe 
ase of generi
 lo
al noise.We 
onsider a 
lass of n-qbit states that are diagonal in the generalized GHZ-basis (the 
oe�-
ients λ+

i , λ
−
i will be des
ribed later):
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∣

∣φ±
i
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=
1√
2
(|i〉 ± |̄i〉) , (2)where for n-qubit system i ∈ {0, 1, ..., 2n−1 − 1}. Here we put n-digit binary representation of

i in |i〉 and its negation in |̄i〉. Note that in the range of indi
es (i.e. {0, 1, ..., 2n−1 − 1}) the
n-digit binary representation of i always starts with 0. For example, for 4-qubit system we have
∣

∣φ±
2

〉

= 1√
2
(|0010〉 ± |1101〉). We use the notation #1(i) for the number of ones in the binaryrepresentation of the number i. For instan
e #1(i = 7) = 3 sin
e the binary representation "1101"of the number 7 
ontains three ones.For #1(i) < k or #1(i) > n − k, the 
oe�
ient λ+

i = λ; for #1(i) = k or #1(i) = n − k, the
oe�
ient λ+
i = λ−

i = λ/2; all the others λ+
i , λ

−
i are equalt 0. Here λ = 1/

∑k
i=0

(

n
i

) follows dire
tlyfrom the normalisation 
ondition.



3The exemplary state ρn,k with n = 4, k = 2 is presented below
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∣ (3)where I1 = {0, 1, 2, 7} and I2 = {3, 4, 5, 6}.Proposition 1. For any n, k the state ρn,k passes positive partial transpose test (PPT) with respe
tto lo
al transposition on any single qubit system and, as su
h, it is bound entangled.We study usefulness of states ρ for quantum metrology in terms of Quantum Fisher Information(QFI) whi
h quanti�es the amount of information on unknown parameter θ that may be extra
tedby optimal measurements. In 
ase of multipartite separable states, maximal value of QFI s
aleslinearly with the system size (SNL). This is re�e
ted by the separability 
ondition for quantumFisher information FQ (see [12℄), i.e. for any separable state ρsep, it holds:
FQ(ρsep) ≤ n. (4)On the 
ontrary, the highest s
aling i.e. quadrati
 one (HL) FQ(ρ) ≈ n2 may be a
hieved only byentangled states ρ.We obtained that for k = 2 and n ≥ 7 (k = 3 and n ≥ 8 respe
tively) FQ(ρn,k) > n. Moreoverwe get:Proposition 2. Quantum Fisher Information FQ(ρn,k) satis�es:

FQ(ρn,k) ≥ (n− 2k)2
k

n+ 1
(5)for any n and k < n

2 . In parti
ular putting k(n) = an (a < 1
2) it follows the asymptoti
 behaviour

lim
n→∞

FQ(ρn,k(n))

a(1− 2a)n2
≥ 1. (6)We �nd that for the states ρn,k, the e�
ien
y of Fisher information separability test does not
oin
ide with the e�
ien
y of some strong Bell inequality tests. We have 
hosen the family of all

n-qubit-
orrelation Bell inequalities with 2n−1 × 2n−1 × ... × 2n−2 × ... × 2 settings per sides (see[14℄, [15℄), whi
h 
an be written as the simple inequality
C(n)(ρ) ≤ 1 (7)where C(n) is a spe
ial (optimised) fun
tion of the 
orrelation tensor of the state. The above 
anbe seen as a ne
essary 
ondition for separability of any n-qubit state. Remember that anotherne
essary 
ondition for separability of n qubits is the shot-noise limit bound. We have 
al
ulatedthe upper bound for the fa
tor (7) for some states from the 
lass ρn,k. We obtained that for

k = 2 and k = 3 and n respe
tively from the set {7, 8} and {8, 9, 10}, Fisher Information 
riterionoutperform 
orrelation Bell inequality 
ondition (7), i.e. it dete
ts entanglement while 
orrelation
ondition indi
ate hidden variable model (see the Figure 3 for the details).The above observation suggests need of deep study of nonlo
ality in the 
ontext of metrologywhi
h was, to our knowledge, not pursued so far. In parti
ular one of the questions that maybe raised is possible role of metrology as a ne
essary 
ondition for standard, or even weaker i.e.sequential, nonlo
ality.[1℄ Giovannetti, V., Lloyd, S. & Ma

one, L. Advan
es in quantum metrology. Nat. Phot. 5, 222 (2011).
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FIG. 1: Pre
isely 
al
ulated QFI and the limit it a
hieves in the in�nity for two di�erent values of k. Blueand purple lines show how the Fn,k
Q 
hange for k = 3 and k = 2 respe
tively. Dashed lines depi
t asymptotes.Shaded area 
orrespond to sub-shot noise a

ura
y.
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FIG. 2: Asymptoti
 behaviour of the quantum Fisher information for ρn,k(n) states in the 
ase when k = an.Dependen
e on n is 
al
ulated for three di�erent values of a: 1/8 (red), 1/4 (purple) and 3/8 (blue). Shadedarea 
orrespond to sub-shot noise a

ura
y.
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FIG. 3: Comparison of Fisher Information 
riterion and 
orrelation 
ondition in the power of entanglementdete
tion. Here we plotted FQ/FCl and C(n) for ρn,2. Tests dete
t entanglement when their values ex
eed
1. The most interesting region is where Fisher Information 
riterion dete
t entanglement for states withhidden variable model (i.e. FQ/FCl > 1 and C(n) < 1, see main text). For 
omparison we also plot value ofKlya
hko-Mermin (KM) inequality. For analysed states it performs mu
h worse than C(n).


