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We show that quantification of the performance of quantum-enhanced measurement schemes based
on the concept of quantum Fisher information (QFI) yields asymptotically equivalent results as the
rigorous Bayesian approach, provided generic uncorrelated noise is present in the setup. At the same
time, we show that for the problem of decoherence-free phase estimation this equivalence breaks
down and the achievable estimation uncertainty calculated within the Bayesian approach is by a π
factor larger than that predicted by the QFI even in the large prior knowledge (small parameter
fluctuation) regime, where QFI is conventionally regarded as a reliable figure of merit.

Capability of performing precise measurements is the cornerstone of modern physics. Quantum mechanics
provides insight into fundamental limits on the achievable measurement precision that cannot be beaten
irrespectively of the extent of any improvements in measurement technology. The best known example is
that of the optical phase measurement where difference of phase delays in the arms of interferometer in the
absence of decoherence can only be measured up to a precision that scales as ∆ϕ ≥ 1/N whereN is the number
of photons sent into the setup. This limit is referred as tne Heisenberg limit, as it may be informally viewed
as a version of the Heisenberg uncertainty relation adapted to the phase-photon number case. Presence of
decoherence, however, which may be due to noise or experimental imperfections, typically prevents quantum-
enhanced measurement schemes from reaching the Heisenberg scaling, and it may be demonstrated that for
the generic uncorrelated noise processes classically scaling bounds ∆ϕ ≥ const/

√
N hold, limiting quantum

enhancement to a constant factor precision improvement [1, 2]. Most of the bounds derived in the field of
quantum metrology, including the ones mentioned above, are applications of the celebrated Quantum Cramér-
Rao (C-R) bound [3] ∆ϕ ≥ 1/

√
kF which is based on calculation of the Quantum Fisher Information (QFI)

F = tr
(
ρϕL

2
ϕ

)
, where k is the number of independent repetitions of experiment, ρϕ = Λϕ(|ψN 〉〈ψN |) is the

output state of the channel Λϕ which imprints value ϕ of the parameter we want to estimate on the input
pure state |ψN 〉 of N probes and Lϕ is an operator called symmetric logarithmic derivative (SLD) given by

equation
dρϕ
dϕ = 1

2{ρϕ, Lϕ}. To get the optimal bound one needs now only to optimize QFI over input states.

It is known that in principle C-R bound may be saturated by a projective measurement in the eigenbasis of
SLD and maximum likelihood estimator in the limit k →∞.

Practical implications of this last statement are far form obvious, however. The QFI is a point-estimation
concept that depends only on the local properties of the state at a given parameter value ϕ. Saturating
the C-R bound may therefore require unrealistically good prior knowledge on the value of the estimated
parameter. This is most pronounced by analyzing the behavior of the phase estimation using the N00N
states, which are invariant under 2π/N phase shifts and hence require the prior knowledge of the parameter
value to be of the order of 1/N as well. Additionally, since Lϕ in general depends on ϕ so can the optimal
measurement, and again a significant prior knowledge may be required to perform the optimal measurement.
Last but not least, in order to quantify the performance in terms of the total resources consumed, i.e. kN ,
one needs to know the behavior of the required number of repetitions k with the increase of N , which is
nontrivial and in general does not lead to analytical formulas.

However, there are also alternative ways of deriving bounds on the performance of quantum-enhanced
measurement schemes, that does not suffer from the above mentioned deficiencies, and hence yields the
practically achievable precision limits. In particular in the Bayesian approach one explicitly takes into account
the prior knowledge about the parameter value, represented by a probability distribution p(ϕ). In this case,

we define the average Bayesian error as ∆ϕ =
√´

dϕ
´
dxp(ϕ)pΠ(x|ϕ)(ϕ− ϕ̃(x))2 where pΠ(x|ϕ) = trρNϕ Πx.

Finding the minimal ∆ϕ requires optimization over input state, measurements and estimators which in
general is much more demanding than maximization of QFI over input states. Yet, contrary to the QFI case,
once the solution is found it yields a the explicit estimation procedure that saturates the minimal average
Bayesian error.

In [4] we have shown in which situations Bayesian error is asymptotically equal to the C-R bound. This
allowed us to prove that in the case of local uncorrelated decoherence C-R bound is always asymptotically
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FIG. 1: Bayesian error (a) for the flat prior distribution p(ϕ) = 1/2π (dashed) vs. bound given by the QFI (solid)
as a function of the number of particles for losses (black) and local dephasing (gray) with decoherence parameter

η = 0.7. For comparison ultimate asymptotic QFI based bounds on precision [1, 2] are depicted for losses
√

1−η
ηN

(black, dotted) and dephasing
√

1−η2
η2N

(gray, dotted). (b) Bayesian error for decoherence-free phase estimation for

various prior distribution p(ϕ) all asymptotically converge to π/N formula (gray, dashed). For comparison, 1/N C-R
bound is given by black dashed line. The shapes of the prior distribution are depicted in the inset.

saturated by Bayesian procedure whereas in the decoherence free case we establish new limits on precision.
In the latter case we have used a general result which states that in the presence of local decoherence and

when parameter is encoded unitarily Λϕ = Uϕ ◦ Λ, QFI asymptotically scales linearly with the number of
probes in the input state [1, 2]. This allowed us to effecitvely divide entangled input state of N particles
into k copies of some other entangled state with smaller number of particles n = N/k. By proving that

asymptotically n
N→∞→ const we obtain that one may effectively think of this case as estimation with some

state with fixed number of photons n and number of repetitions k going to infinity, which is the limit in which
C-R bound is saturated. Next we have used argument from quantum local asymptotic normality theorem
[5] which states that estimation with the state of the form ρ⊗kϕ is asymptotically equivalent to estimation of
displacement of some Gaussian state to show that Bayesian error asymptotically is equal to the C-R bound.
As an example we plot C-R bound and Bayesian error fig. 1(a) as a function of number of photons N for
dephasing and losses and the asymptotic equality between two approaches is clearly seen.

In the case of decoherence-free estimation we have shown that for an arbitrary narrow Gaussian a priori
probability distribution Bayesian error scales asymptotically like π/N . Using the fact that this is the same
scaling as for flat a priori knowledge [6] we conclude that π/N is the best precision obtained also for all
intermediate cases. This however means that irrespectively of a priori knowledge Bayesian precision asymp-
totically is always given by π/N which is greater than conventional Heisenberg scaling obtained from C-R
bound by a factor of π (see fig. 1(b)). Moreover, based on numerical calculations we were able to conjecture
that for general unitary evolution Uϕ = eiϕH where H is Hamiltonian with largest and smallest eigenvalues
λ+, λ− respectively, Bayesian error asymptotically scales as π/N(λ+ − λ−), which also differs by a π factor
from the C-R bound limit of such case [7].

Additionally we considered also what is the behavior of Bayesian error and C-R bound for collective
dephasing which is an example of global decoherence channel - it cannot be decomposed into separate channels
acting on each particle only. In such case we obtained that Bayesian precision depends on a priori probability
distribution and in general cannot be related to C-R bound. This may be understood intuitively because QFI
for such channel is limited from above by some constant, so increasing number of particles at some point does
not provide any further advantage. On the other hand if the priori knowledge gives already better precision
than C-R bound, it should be no surprise that Bayesian error also would be better.

Eventually we considered also proposed scenarios of beating Heisenberg limit in the decoherence free



3

case, which rely on calculating C-R bound with states with indefinite photon number, constructed as a
superposition between low photon number state (for example vacuum) and some high photon number state.
We showed that such strategies are ineffective in the Bayesian approach as they cannot give better precision
than π/N̄ .

In summary we have proved that in presence of uncorrelated decoherence the asymptotic limits on pre-
cision of quantum metrological schemes may be credibly calculated using the QFI approach whereas in the
deocherence-free unitary parameter estimation a π factor correction needs to be included irrespectively of
the extent of prior knowledge. These observations provide a firm ground for the use of QFI as a sensible
figure of merit in analyzing the performance of quantum enhanced metrological protocols based on definite
particle number states. In case of strategies employing states with indefinite number of particles the claims
remain unchanged in presence of uncorrelated noise, but for the decoherence-free case the Bayesian analysis
shows that proposals based on the analysis of the C-R bound which prompted the claims on possibility of
sub-Heisenberg estimation strategies are not of much practical use, and the actual Bayesian cost cannot scale
better than π/N̄ where N̄ is the average number of particles.
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