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I. MOTIVATION AND MAIN RESULTS

A quantum private states of a dimension d (so called pdits) is composed from a d⊗ d AB part called "key", and
A′B′ called "shield", shared between Alice (subsystems AA′) and Bob (subsystems BB′) in such a way that the
local von Neumann measurements on the key part in a particular basis will make its results completely statistically
uncorrelated from the results of any measurement of an eavesdropper Eve on her subsystem E, which is a part of
the purification |Ψ〉ABA′B′E of the pdit state ρABA′B′ . Pdits (especially pbits) have of great importance in quantum
cryptography and have been studied extensively for some time [10–15].

In our poster we would like to present the new construction the set of private states of a dimension d which
contain all previously known examples of pdits. We examine a bunch of properties for this new class like the trace
distance to a pdit in the maximally entangled form 1. For a certain but wide subclass we also present that this
distance scales inversely with the dimension of the shield part ds and gives the lower bound for the distance from
the set of separable states. Using our construction we are also able to show that we do not need many copies of
pdits [Badzia̧g et al., Phys. Rev. A 90, 012301 (2014)] to boost the distance from the set of separable states (SEP),
which is somehow more "natural" way to obtain states with certain properties. At the end we provide also explicit
calculations of a family of states such that the 2− ε distance from SEP obtained in [Beigi et al., J. Math. Phys. 51,
042202, (2010)] and [Badzia̧g et al., Phys. Rev. A 90, 012301 (2014)] is recovered, such that the scaling of ε with the
distance is improved, d ∝ 1/ε3, as opposed to d ∝ 2(log(4/ε))2

from Badzia̧g et al.

II. GENERAL IDEA OF CONSTRUCTION

Our goal is to construct set of states ρABA′B′ which has PPT property 2 and they are close to pdits in the maximally
entangled form. We postulate that all states which we want to consider have the following structure:

ρABA′B′ =
d

∑
l=0

ωl ∈ B
(
Hdk
⊗Hdk

⊗Hds ⊗Hds

)
, (2)

where B(H) is the algebra of all bounded linear operators on Hilbert space H, d = 1
2 dk(dk− 1) and by dk we denote

the dimension of the key part acting on AB and by ds the dimension of the shield part acting on A′B′. Now we
describe each of the components from Eq. (2). First of all, we define the term ω0 as:

ω0 =
dk−1

∑
i,j=0
|i〉〈j| ⊗ |i〉〈j| ⊗ a(0,0)

ij , (3)

1For example maximally entangled form of pdit with dimension of the key part dk = 2 have a following representation:

γ0 =
1
2


√

XX† 0 0 X
0 0 0 0
0 0 0 0

X† 0 0
√

X†X

 , (1)

where X is an arbitrary operator with trace norm equal to one.
2PPT (Positive Partial Transposition)
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where every a(0,0)
ij ∈ B (Hds ⊗Hds). The rest of elements ωl , for 1 ≤ l ≤ 1

2 dk(dk − 1) from Eq. (2) are given by the
following formula

ωl = |i〉〈i| ⊗ |j〉〈j| ⊗ a(i,j)00 + |i〉〈j| ⊗ |j〉〈i| ⊗ a(i,j)01 +

+ |j〉〈i| ⊗ |i〉〈j| ⊗ a(i,j)10 + |j〉〈j| ⊗ |i〉〈i| ⊗ a(i,j)11 ,
(4)

where indices i, j = 0, . . . , dk − 1 for i < j.
Let us introduce the following notation, namely:

A(i,j) =

(
a(i,j)00 a(i,j)01
a(i,j)10 a(i,j)11

)
, (5)

where i, j = 0, . . . , dk − 1 for i < j. Separately, for the term A(0,0), we have

A(0,0) =


a(0,0)

00 · · · a(0,0)
0,dk−1

...
. . .

...
a(0,0)

dk−1,0 · · · a(0,0)
dk−1,dk−1

 . (6)

Then, there is also explicit connection between positivity of the state ρABA′B′ and each submatrix A(i,j) and positivity
of ρ

TA′ TB′
ABA′B′ and each block A(i,j) after partial transposition on the system TB′ , which can be quite easily deduced

from the block structure of states ρABA′B′ (see Observation 1 in). At the end of this section is worth to remind
again that thanks to proper choice of the all blocks from (3) (5) (6) we can recover all known forms of pdits. As

an example we recover one of the pdit given in [13]. Let us put γV = B
(
C2 ⊗C2 ⊗Cds ⊗Cds

)
then choosing

a(0,0)
00 = 1/d2

s , a(0,0)
01 = V /d2

s , a(0,0)
10 = V /d2

s , a(0,0)
11 = 1/d2

s then we have

γV =
1
2


1/d2

s · · V /d2
s

· · · ·
· · · ·

V /d2
s · · 1/d2

s

 ,

where V = ∑ds−1
i=0 |ij〉〈ji| is known as the swap operator, 1 is the identity matrix of dimension d2

s × d2
s and by dots

we denote matrices of dimension d2
s × d2

s filled with zeros.

III. PROPERTIES OF THE NEW CLASS OF STATES

In this section we would like to summarize the main results obtained for the class of states given by the for-
mula (2). First of all we calculate trace distance between states ρABA′B′ defined in equation (2) and the set of pdits
in the maximally entangled form (Theorem 1). Next we show that this distance scales inversely proportional to
the dimension of the shield part ds for some special, but very wide subclass of states given in (2) (Lemma 2). At
the end we explain that for this specific subclass we are able calculate the lower bound for the trace distance from
the set of separable states SEP . We show that this bound scales inversely with the dimensions of the shield part
(Lemma 3). At the end we present also technical Theorem 4 which improves known scaling given in [17] of the
trace distance for the states given by (2), which are 2− ε close to SEP .

Before we formulate above mentioned results let us rewrite state from (2) in more convenient form

ρABA′B′ = pγ0 +
q
d

d

∑
i=1

γi, with γ0 =
1

Tr ω0
ω0, γi =

1
Tr ωi

ωi, (7)

with p + q = 1 and d = 1
2 dk(dk − 1). Now we are ready to formulate first theorem which states the trace distance

from the set of pdits in the maximally entangled form γ0:

Theorem 1. Let us assume that we are given with ρABA′B′ as in Eq. (2) and the pdit γ0 in its maximally entangled form,
then the following statement holds:

||ρABA′B′ − γ0||1 = q. (8)
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To formulate the rest results mentioned at the begin of this section we need specific choice of the operators ω0, ωk

given in. In our construction we can choose all matrices a(0,0)
ij = a, where 0 ≤ i, j ≤ dk and all matrices a(i,j)mn = b,

where 0 ≤ m, n ≤ 1 and 0 ≤ i, j ≤ 1
2 dk(dk − 1) with i < j as:

spec(a) =
{

1
d2

s
, . . . ,

1
d2

s

}
, spec(b) =

{
1
ds

, . . . ,
1
ds

}
. (9)

We also assume that which have such spectra are invariant under partial transposition with respect to the system B′.
This assumption may look very rigorous but it is quite easy to construct set of matrices satisfying above constraints
(see for example [17]). Using all above facts we can formulate

Lemma 2. Let us consider the class of states given by

ρABA′B′ = pγ0 +
q
d

d

∑
i=1

γi, (10)

where q = 1− p, d = 1
2 dk(dk − 1) and states γ0, γi are given by Eqs (3), (4), together with (9). Then the trace distance from

the set of private dits in maximally entangled form is equal to

dist (ρABA′B′ , γ0) =
1

1 + ds
dk−1

, (11)

where ds is the dimension of the shield part and dk - the dimension of the key part.

Now we can formulate theorem which gives mentioned lower bound on trace distance between our wide subclass
of states and the set of separable states SEP :

Lemma 3. The trace distance between set of separable states SEP and class of states of the form

ρABA′B′ = pγ0 +
q
d

d

∑
i=1

γi, (12)

where q = 1− p and d = 1
2 dk(dk − 1) is bounded form below:

dist(ρABA′B′ ,SEP) ≥ 2− 2
dk
− 1

1 + ds
dk−1

, (13)

where ds denotes the dimension of the shield part and the dk dimension of the key part.

Finally we can improve the scaling of the trace distance for states, which are 2− ε close to the separable states
SEP :

Theorem 4. For an arbitrary ε > 0 there exists a PPT state ρ acting on the Hilbert space Cd ⊗Cd with d ≤ c
ε3 such that:

dist(ρ,SEP) ≥ 2− ε, (14)

where c is constant. The sate is given by (10).

We have found analytically that constant c < 48. This result considerably improves the bound obtained in [17].
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