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Quantum algorithms for solving linear systems, and the controversy The past two
decades witnessed the development of quantum algorithms [Mos09], and one recent discovery is
quantum speedup for solving linear systems Ax = b for sparse and well-conditioned matrices
A € R™P. Solving linear systems is a ubiquitous computational task, and sparse and well-
conditioned matrices form a fairly large class of inputs frequently arising in many practical applica-
tions, especially in recommendation systems where the data set can be very sparse [ZWSP08]. The
best classical algorithm for solving linear systems for this class of matrices runs in time O(y/ksn)
[She94], where x is the condition number of A (i.e. the ratio between A’s largest and smallest
singular values), and the sparseness parameter s is the maximum number of non-zero entries in
each row of A. Harrow, Hassidim and Lloyd [HHLO09] introduced an efficient quantum algorithm,
thereafter referred to as HHL algorithm, for the linear system problem, and the algorithm runs in
time O(s2k?logn). The dependence on & is later improved by Ambainis [Amb12] and the algorithm
was used for solving least squares regression (defined next) by Wiebe, Braun and Lloyd [WBL12].

Though the costs of these quantum algorithms are exponentially smaller than those of the
best known classical algorithms, there is a catch that these quantum algorithms do not output
the entire solution z*, but compress z* € R" (assuming n = p) into a log n-qubit quantum state.
More precisely, the output is a quantum state |z*) proportional to > !, z}|i). This important
distinction between outputs of classical and quantum algorithms caused some controversy. After
all, one cannot read out the values z; from |z*). Indeed, if outputting all =} is required as classical
algorithms, then any quantum algorithm needs ©(n) time even for just writing down the answer,
thus no exponential speedup is possible.

Despite this drawback, the quantum output |2*) can be potentially useful in certain context
where only global information of z* is needed. For instance, sometimes only the expectation value of
some operator associated with z*, namely 2*7 Mz* for some matrix M is needed [HHL09]. Another
example is when one desires to compute only the weighted sum ) ¢;z}, then SWAP test can be
used on [¢) =, ”gﬁh) and |z*) to get a good estimate of Y ¢;z} in time O(logn). As argued in
[Amb12], this is impossible for classical algorithms unless P = BQP.

In this paper, we give new quantum algorithms which also touch upon the controversial issue
from two perspectives. First, we design an efficient quantum algorithm for least squares regression,
which runs in time O(logn) for sparse and well-conditioned A. Same as the one in [WBL12],
our quantum algorithm outputs a quantum sketch |z*) only, but our algorithm is simpler, and
more efficient with a better dependence on s and k. In addition, we consider the case that A is
ill-conditioned, or even not full-rank. Classical resolutions for such cases use regularization. We
give efficient quantum algorithms for two popular regularized regression problems, including ridge
regression and §-truncated SVD, based on our algorithm for least squares regression.



Second, we design efficient quantum algorithms for calculating statistic leverage scores (SLS) and
matrix coherence (MC), two quantities playing important roles in many machine learning algorithms
[Sar06][DMMO8][MD09][BMD09][DMMS11]. Our algorithm has cost O(logn) for approximately
calculating the k-th statistic leverage score s for any index k € [n], exponentially faster than the
best classical algorithms. Repeatedly applying this allows us to approximately calculate all the
statistic leverage scores in time O(nlogn) and to calculate matrix coherence in time O(y/nlogn),
which has a polynomial speedup to their classical counterparts of cost O(n?) [DMIMW12]. Note
that different than all aforementioned quantum algorithms that output a quantum sketch only, our
algorithm for calculating SLS and MC indeed produces the requested values, same as their classical
counterpart algorithms’ output. Our algorithms are based on the phase estimation idea as in the
HHL algorithm, and the results showcase the usefulness of the HHL algorithm even in the standard
computational context without controversial issue any more.

Next we explain our results in more details.

Least Squares Regression Least squares regression (LSR) is the simplest and most widely
used technique for solving overdetermined systems. Given an n x p matrix A (n > p) together
with an n-dimensional vector b, the goal of LSR is to compute a p-dimensional vector z* =
arg min, gy | Az — b||3. For well-conditioned problems, i.e. those with the condition number of
A being small (which in particular implies that A has full column rank), it is well known that
the above has a unique and closed-form solution z* = Afb, where A is the Moore-Penrose pseu-
doinverse of A. If one computes z* naively by first computing A" and then the product Afb, then
the cost is O(p?n + n?p), which is prohibitively slow in the big data era. Therefore, finding fast
approximation algorithms which output a vector T & x* is of great interest. Classically, there
are known algorithms that output an & with a relative error bound ||z — z*||, < €||z*||, for any
constant error 0 < e < 1, and run in time O(nnz(A) + nr) [CW13][NN13], where nnz(A) is the
number of non-zero entries in A, r is the rank of A and the O notation hides a logarithmic factor.
These algorithms are much faster than the naive ones for the special case of sparse or low rank
matrices, but remain linear in size of A for general cases. Given that it is impossible to have
classical approximation algorithms to run in time o(np) for general cases, it would be great if there
exist much faster quantum algorithms for LSR. Similar to [HHLO09], one can only hope to produce
a quantum state close to |2*) fast. [WBL12] gives a quantum algorithm which outputs a quantum
state close to |z*) in time O(log(n +p)s3k%). In this paper, we propose a better quantum algorithm
that outputs a quantum state close to |z*) in time O(log(n + p)s?s?). Compared to [WBL12], our
algorithm is much simpler since we directly apply the operator Af to the state |b), while they first
applied AT to |b) to get |ATH), then prepared (AT A)~! and applied it to |ATb). This simplicity
also leads to a better dependence on s and k in our algorithm. Another important difference is that
[WBL12| assumes that A is Hermitian, which is usually not the case for typical machine learning
applications'. Our algorithm works for non-Hermitian matrices as well, for which we need to work
on singular Hermitian matrices A. Finally, note that |x*) misses one important information of
x*, namely its ¢o norm, which is actually crucial if we want to compute ), c;z; by SWAP test
in aforementioned applications. Our algorithm gives a good estimate to ||2*||3 without within the
same running time bound.

! Although the authors mentioned a standard pre-processing technique to deal with the non-Hermitian case, but
they seem to have overlooked the fact that after the pre-processing, the new input matrix is not full (column) rank
(unless n = p, which is hardly the case in machine learning settings).



Ridge regression and truncated SVD For ill-conditioned problems, i.e. when the condition
number of A is large, the solution given by z* = Ab becomes very sensitive to errors in A and
b. A prevailing solution in practice is to use regularization. Two of the most commonly used
regularization methods are ridge regression [GHO99] (a.k.a Tikhonov regularization) and truncated
singular value decomposition [Han87]. For ridge regression (RR) problem, we are given an n x p
matrix A, an n-dimensional vector b together with a parameter A > 0, and we want to compute
o* = argming, gy | Az — bl|3 + A||z||3. The unique minimizer of this is «* = (ATA 4+ AI,) ' ATb
[Tik63], which takes O(np? + p?®) time to compute in the naive way. An alternative solution uses
the dual space approach by computing an equivalent expression z* = AT (AAT + \I,,)~'b [SGV9S],
which takes O(n?p+n?) time to compute in the naive way, and is faster than the original one when
p > n. When approximation is allowed, the best classical algorithm for ridge regression outputs
an approximation solution # satisfying || — 2*||, < €||z*||, in time O(nnz(A) 4 n?r) [CLL*14].
This algorithm has an significant speedup over the previous algorithms when A is sparse or of
low rank, but still slow for general cases. Based on our algorithm for LSR, we design a quantum
algorithm which generates a quantum state close to |z*) and estimates the norm ||Z[|2, in time
O(log(n + p)s?k3/e?), for ' = max{1,v/A}/min{Z, VA}.

Next we discuss truncated singular value decomposition (truncated SVD). In this problem we
are given an n X p matrix A, an n-dimensional vector b together with a parameter 6 > 0 and we
want to find z* = arg min, gy | A5z — b||3, where A5 = D i 6 Mol assuming A = Y77 Nuol s
the SVD of A. A naive algorithm to solve 6-TSVD needs to first compute the matrix As and then
solve the least squares regression problem with the new input As and b in O(n2p + np2) time. Our
algorithm for LSR can be also adapted to solve §-TSVD efficiently.

Calculating statistic leverage scores and matrix coherence Given an n X p matrix A of
rank 7 with SVD A = USVT where U € R™*", ¥ € R™" and V € RP*", the statistic leverage
scores (SLS) of A are defined as s; = ||U3, @ € {1,...,n}. The matrix coherence (MC) of A is
defined as ¢ = max;c(y, .} si, the largest statistic leverage score of A. Though the definition uses
A’s SVD, which is not necessarily unique, it is not hard to see that each s; depends on A only, not
any specific SVD decomposition of A.

Statistic leverage scores measure the correlation between the singular vectors of a matrix and
the standard basis and they are very useful in large-scale data analysis and randomized matrix
algorithms [MD09][DMMO08]. Equal to the diagonal entries of the “hat-matrix”, they are widely
used to indicate possible outliers in regression diagnostics [HW78][CH86]. In addition, many
random sampling algorithms for matrix problems like least-squares regression [Sar06][DMMS11]
and low-rank matrix approximation [Sar06][DMMO0S|[MD09][BMDO09] use them as an important
indicator to design the sampling distribution which are used to sample the input data matrix.

The related parameter, matrix coherence, has also been of interest recently in problems like
Nystrom-based low-rank matrix approximation [TR10] and matrix completion [CR09].

The best classical algorithm for both calculating the statistic leverage scores and calculating
matrix coherence takes time O((np+p?)logn) [DMIMW12]. In this work, we design a fast quantum
algorithm to approximate the statistic leverage score s; for any index ¢ € {1,...,n} in time O(logn)
when A is sparse and the ratio between A’s largest singular value and smallest non-zero singular
value is small. And thus we can approximate all the statistic leverage scores in time O(nlogn) by
running the algorithm for index ¢ = 1,...,n. And we can approximate the matrix coherence in time
O(y/nlogn) by using amplitude amplification.



