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Boson Sampling is an intermediate model of quantum com-
putation that seeks to generate random samples from a prob-
ability distribution of photon counting events at the output of
an M -mode linear-optical network consisting of passive op-
tical elements, for an input with N of the modes containing
single-photons and the rest in the vacuum states [1]. There is
great interest in this particular computational problem as this
task, despite its simple physical implementation, is strongly
believed to be a problem that cannot be efficiently simulated
classically.

A key observation that leads to the proof of the classical
hardness of Boson Sampling is that the photon counting prob-
abilities are proportional to the modulus-squared of perma-
nents of complex matrices [1]. The permanent of a matrix is
a quantity which is calculated in a similar manner to a ma-
trix determinant but without the alternating of addition and
subtraction and instead only adding terms. Computing per-
manents is believed difficult (#P-hard in complexity theory),
and it is in a class that contains the hierarchy of complexity
classes (the polynomial hierarchy) [3, 4]. It was shown that,
as approximating those probabilities to within a multiplica-
tive constant is also a #P-hard problem, Boson Sampling can-
not be simulated classically, unless the polynomial hierarchy
collapses to the third level; a situation believed to be highly
unlikely.

By using tools of quantum optics we present new results
that are of interest from both quantum theory and the com-
putational complexity theory point of view [2]. We consider
the problem of sampling from the photon-counting probabil-
ity distribution at the output of a linear-optical network for
input Gaussian states, which is referred to as Gaussian Boson
Sampling; see Fig. 1. We first present a general formula for
the probabilities of detecting single-photons at the output of
the network. Then by using this formula we show that proba-
bilities of single-photon counting for input thermal states are
proportional to permanents of positive-semidefinite Hermitian
matrices. However, as thermal states are a statistical mixture
of coherent states, we show that sampling from the output
probability distribution can be efficiently simulated on a clas-
sical computer. Thus, by using Stockmeyer’s approximate
counting algorithm [1, 5], one can approximate permanents
of positive-semidefinite Hermitian matrices in the complexity
class BPPNP, which is contained in the third level of the poly-
nomial hierarchy and hence believed to be less computation-
ally complex than #P-hard. Similarly, using the same argu-
ment we show that Boson Sampling with any classical states,
which have a positive semi-semidefinite P function, can be
simulated on a classical computer, and the output probabili-
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FIG. 1: In Gaussian Boson Sampling problem for given a product
Gaussian input state, ρin = ⊗M

s=1ρs, and a unitary matrix describing
the network, one samples from the output probability distribution
p(n).

ties can be approximated in BPPNP.
In addition, we consider squeezed-vacuum states as input to

a linear-optical network. We show that the probabilities of de-
tecting single-photons at the output proportional to modulus-
squared of a quantity ON , which is obtained by summing up
(N − 1)!! complex terms with N being the number of the de-
tected single-photons. It was recently shown that a specific
case of this problem is equivalent to a randomized version of
the Boson Sampling problem that cannot be efficiently simu-
lated using a classical computer [6]. This implies that, follow-
ing the results from [1, 5], at least for this specific problem
even approximating |ON |2 to within a multiplicative error is
#P-hard. However, this would be surprising if this problem
was the only case of the general problem of Boson Sampling
with squeezed-vacuum states, for which approximating |ON |2
is a #P-hard problem. We believe our results show that the
consideration of problems in quantum optics can help to clas-
sify and identify new problems in complexity theory.
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