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Abstract

In the early days of quantum mechanics, the time energy uncertainty principle, AEAt > g was
misinterpreted as a lower bound for the duration (At) required for measuring the energy of a state
with accuracy AE. Though many systems obey this lower bound, Y. Aharonov and Bohm (1961)
were the first to give a counter example using a measurement Hamiltonian, which is infeasible: they
can reach an exponentially small accuracy AF in time At = 1 by increasing the norm of their
Hamiltonian by a factor inverse to the accuracy, namely by investing an exponential amount of
energy. In this work we claim that Shor’s algorithm is the first example for measuring an energy
with accuracy of n bits (i.e. exponentially good accuracy), in complexity that is polynomial in n.
This is due to an effect which we define of acceleration of Hamiltonians - the ability to simulate
an evolution of a system under Hamiltonian for time ¢ using significantly less than ¢ computational

steps. This raises the question: What other interesting Hamiltonians can be accelerated?

1 Background

Using the Fourier transform it is well known that one can prove the position-momentum uncertainty
principle (PMUP).

PMUP Given two identical ensembles of quantum particles, if we measure the position of one ensemble
and the momentum the other, the variances are subject to the following relation:

AzAp > g (1)

Like position and momentum, frequency and time are also conjugate variables, and since frequency
represents energy in quantum theory, a natural question is whether a time and energy also obey an
uncertainty principle. Several obstacles arise immediately - time is not an operator but a scalar, hence it
commutes with all quantum operators; the “time” quantity of a particle is not well defined; time doesn’t
evolve, and can’t be a constant of motion. A common misconception of the time energy uncertainty
principle (TEUP) is the following:

TEUP Misconception The duration At of an energy measurement with accuracy AE is bounded

from below by

AEAt > b (2)
2

This interpretation was rebutted by Y. Aharonov and Bohm [1]. By increasing the coupling between
the system measured and the measurement device, the measurement duration can be reduced indefinitely.
Adapting their argument, one can describe an energy measurement scheme of an eigenstate |Ug) of a



Hamiltonian H with energy E in the Hilbert space Hsystem, as a unitary operator U operating on
Hsystem @ Houtpur defined by

UlVg,z) = e HOHouru B\ G p B & ), (3)

with At annotating the measurement duration, and E’ annotating the outcome of the measurement
(an approximation of the energy). Knowing H, the measurement duration At can be decreased by an
arbitrary factor c, at the cost of multiplying the interaction Hamiltonian H ® Hoytput by c.

2 Our Contribution

One might suspect that the violation of the TEUP presented in [1] is due to the usage of unphysical
measurements, namely, unbounded norms. It is natural to speculate that confining ourselves to physically
realistic situations, an appropriate TEUP can be defined and shown to hold. A first attempt might read:

Conjecture 1 (TEUP bounded norm version). If the norm of the interaction Hamiltonian is O(1), then
the energy measurement duration is inversely proportional to the accuracy.

Claim: Conjecture 1 is false, since any unitary matrix has eigenvalues on the complex unit circuit,
and hence can be generated using a Hamiltonian and time satisfying ||Ht|| = O(1). O

However, the time complexity for computing as well as applying the Hamiltonian might be exponen-
tially high. Therefore, a natural modification of Conjecture 1 would be to require that not only that the
norm of the Hamiltonian is bounded, but also that it can be applied efficiently by a quantum circuit.
Hence, we identify “physically realistic” with “efficiently applicable by a quantum circuit”:

Conjecture 2 (TEUP bounded complexity version). An energy measurement of a state under a Hamil-
tonian H with accuracy AFE satisfies

AFE - (measurement circuit depth) > 1. (4)

We define the measurement circuit depth to be the minimal depth of a quantum circuit performing
the measurement, namely the time required to apply the measurement. In a Hamiltonian language, we
replace the universal set of gates used in quantum circuits by a list of Hamiltonians with constant norms
applied for a single time unit. Since the example adapted from [1] requires increasing the norm of the
measurement Hamiltonian by a factor ¢, it is equivalent to increasing the depth of the quantum circuit
simulating the Hamiltonian evolution by the same factor.

Theorem 1 (main). Shor’s algorithm can be associated with a Hamiltonian whose energy measurement
satisfies
AE - (measurement circuit depth) = 1/exp(n), (5)

and therefore the complexity version of the TEUP is exponentially violated.

Proof. Phase estimation is a common procedure in quantum computing, which estimates the phase of
an eigenvalue of a unitary operator (see section 5.2 in [3]). Since each unitary operator U = e~ is
generated by applying an non-unique effective Hamiltonian H for a single time unit, it is natural to see
the phase estimation as an energy measurement (modulo 27) of a state under the Hamiltonian H.

In Shor’s algorithm, the order r of a € Z3, is found with O(1) probability by phase estimating a

randomly chosen eigenstate of the unitary operator

Ug|x) = |ax Mod M), (6)
i.e. by estimating the energy of that state under the effective Hamiltonian H,
27
(mlHa|l) = ——— (7)
r (67 log, (m/1) _ 1)
The spectrum of H,, is in the form @ with k& € [0...r —1]. Once an energy is measured with accuracy of

n bits (n is the number of bits required to represent M), and the value k of the energy found is co-prime*

Lif they are not co-prime, we’ll find 71, a factor of r. Repeating the process, we can find ra, and with probability
> 0.607, r equals lem(ri,r2). For details see chapter 6 of [5]



to 7, the continued fraction algorithm can extract r. Since AE = 1/r is exponentially small, and the
time complexity of the algorithm is O(n?3), their product is exponentially small. O

3 Discussion and Implications

An energy measurement with an accuracy exponential in n is feasible due to the ability to apply Uy " (n)
efficiently, or equivalently, by efficiently simulating the evolution of the system under H, for time that
is exponential in n. We define this notion more generally:

Definition 1 (Acceleration of Hamiltonian). The time evolution under a Hamiltonian H applied on
a system of n qubits for duration ¢ can be accelerated to time ¢ = f(H, H',t) < t if there exists an
efficiently computable Hamiltonian H' s.t.

e~ — ¢~ L O(1/poly(n)). (8)

—iHt

Note that since the eigenvalues of e are complex, infinite number of matrices V' satisfies

V = 1In(e Y. (9)

Only a portion of these matrices have a poly(n) norm, and deciding whether any of them represent an easy
to simulate Hamiltonian is not trivial. A simple example for acceleration is the Hamiltonian H = %O'I.
Applying the Hamiltonian for time ¢ > 1 is equivalent to applying it for time ¢’ = ¢ mod 27. However
the acceleration is possible since we already know the eigenvalues. In the light of these observations, the
Shor’s algorithm is special by hiding the solution to factoring in a spectrum of a Hamiltonian that can
be efficiently accelerated without knowing its spectrum.

Note that a version of TEUP can in fact be proven (AEAt > 1/4) if one assume the Hamiltonian
is unknown - however, here we are interested in the case in which at least partial information is known
about the Hamiltonian [2].

To summarize: A new perspective to Shor’s algorithm was presented - as a special counterexample for
the time energy uncertainty principle misconception. In the light of this observation, we are interested
to find what other Hamiltonians can be accelerated (exactly or approximately) without knowing their
spectrum; whether the solution to other interesting problems hides in the spectrum of Hamiltonians
that can be accelerated efficiently; and do other quantum algorithms relate to energy measurement?
Finally, Hamiltonian acceleration may be important to other fields - it may reduce the run time of an
adiabatic computation by effectively increasing the spectral gap, and improve the runtime of continuous
time quantum walks.
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