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1. Introduction

How quantum measurements can help us make decisions? We consider a basic problem, the task of distinguishing
two quantum states, where this question has a neat answer. Given a POVM (Positive Operator-Valued Measure) M
on a Hilbert space H, Matthews, Wehner and Winter [19] introduced its distinguishability norm ‖ · ‖M, which has
the property that given a pair (ρ, σ) of quantum states on H, ‖ρ−σ‖M is (up to a factor 1/2) the bias observed when
the POVM M is used optimally to distinguish ρ from σ (the larger is the norm, the more e�cient is the POVM).
More generally, we can associate to a family of POVMs M the operational norm ‖ · ‖M = sup{‖ · ‖M : M ∈M}
which corresponds to the bias achieved by the best POVM from the family.

In [1], the situation we more particularly look at is when the underlying global Hilbert space H is the tensor
product of several local Hilbert spaces. Various classes of POVMs can then be de�ned on H, corresponding to
various levels of locality restrictions (see e.g. [19] or [15] for further information). For simplicity, let us focus on
the case of a (�nite-dimensional) bipartite system in which both parts play the same role and consider the Hilbert
space H = Cd ⊗Cd.

The most restricted class of POVMs on H is the one LO of local measurements, whose elements are tensor
products of measurements on each of the sub-systems. This corresponds to the situation where parties are not
allowed to communicate. As a relaxation of LO, one may consider the class SEP of separable measurements,
whose elements are the measurements on H made of tensor operators. Important subclasses of SEP are the classes
LOCC and LOCC→ (Local Operations and Classical Communication) of measurements that can be implemented
by a �nite sequence of local operations on the sub-systems followed by classical communication between the parties
(either two-way or one-way). Finally, as a further weakening of the locality constraints, one may look at the
class PPT of positive under partial transpose measurements, whose elements are the measurements on H made of
operators that remain positive when partially transposed on one sub-system.

It is clear from the de�nitions that we have the chain of inclusions

LO ⊂ LOCC→ ⊂ LOCC ⊂ SEP ⊂ PPT ⊂ ALL

and consequently the chain of norm inequalities

(1) ‖ · ‖LO 6 ‖ · ‖LOCC→ 6 ‖ · ‖LOCC 6 ‖ · ‖SEP 6 ‖ · ‖PPT 6 ‖ · ‖ALL.

All the inequalities in (1) are known to be strict provided d > 2 (the di�erence between ‖·‖LOCC→ and ‖·‖LOCC,
as well as between ‖ · ‖LOCC and ‖ · ‖SEP, having been established only very recently though, in [7]).

As for us, we are interested in the high-dimensional behaviour of these norms, and the general question we
investigate is whether or not the various gaps in the hierarchy are bounded (independently of the dimension of the
subsystems). It is already known that the gap between PPT and ALL is unbounded, an important example being
provided by the symmetric state ς and the antisymmetric state α on Cd ⊗Cd which satisfy (see e.g. [10])

‖ς − α‖ALL = 2 while ‖ς − α‖PPT =
4

d+ 1
.

We show however (Theorem 2.1) that such feature is not generic. This is in contrast with the gap between SEP
and PPT which we prove to be generically unbounded (Theorem 2.1). We also provide examples of unbounded
gap between LO and LOCC→ (Theorem 2.3) but we do not know if this situation is typical. Regarding the gaps
between LOCC→, LOCC and SEP, determining whether they are bounded remains an open problem.

Note also that for states of low rank, the gaps between these norms remain bounded. Indeed, it follows from the
results of [15] that, for any Hermitian ∆ of rank at most r on Cd ⊗Cd, we have ‖∆‖LO > ‖∆‖ALL/18

√
r. So we

do not restrict our study to this kind of states, for which it would loose all relevance.
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2. Discriminating power of the different classes of locally restricted measurements: Overview

of our results

Our main result compares the e�ciency of the classes LOCC→, LOCC, SEP, PPT and ALL to perform a
typical discrimination task. Here �typical� means the following: we consider the problem of distinguishing ρ from
σ, where ρ and σ are random states, chosen independently at random with respect to the uniform measure (i.e.
the Lebesgue measure induced by the Hilbert�Schmidt distance) on the set of all states. It turns out that the PPT
constraint on the allowed measurements is not very restrictive, a�ecting typically the performance by only a constant
factor, while the separability one implies a more substantial loss. This shows that generic bipartite states are data
hiding: separable measurements (and even more so local measurements followed by classical communication) can
poorly distinguish them (see [12] for another instance of this phenomenon).

Theorem 2.1. There are universal constants C, c > 0 such that the following holds. Given a dimension d, let ρ and
σ be independent random states, uniformly distributed on the set of states on Cd⊗Cd. Then, with high probability,

c 6 ‖ρ− σ‖PPT 6 ‖ρ− σ‖ALL 6 C,

c√
d
6 ‖ρ− σ‖LOCC→ 6 ‖ρ− σ‖LOCC 6 ‖ρ− σ‖SEP 6

C√
d
.

Here, �with high probability� means that the probability that one of the conclusions fails is less than exp(−c0d) for
some universal constant c0 > 0.

An immediate consequence of these high probability estimates is that one can �nd in Cd ⊗ Cd exponentially
many states which are pairwise data hiding.

Corollary 2.2. There are universal constants C, c > 0 such that, if A denotes a set of exp(cd) independent random
states uniformly distributed on the set of states on Cd⊗Cd, with high probability any pair of distinct states ρ, σ ∈ A
satis�es the conclusions of Theorem 2.1.

We deduce Theorem 2.1 from estimates on the �size� of the unit balls for the norms dual to the distinguishability
norms ‖ · ‖M, for M ∈ {LOCC→,LOCC,SEP,PPT,ALL}. More speci�cally, using techniques from asymptotic
geometric functional analysis, we compute parameters known as the mean width and the volume radius of these
convex bodies (a bit in the spirit of [4]). The use of concentration of measure (i.e. roughly speaking the fact that
�reasonable� functions on a high-dimensional space have an exponentially small probability of deviating from their
average) then allows to pass from these global estimates to estimates in a typical direction. A few tools from random
matrix theory are eventually needed to get the precise results appearing in Theorem 2.1.

We also show that even the smallest amount of communication has a huge in�uence: we give examples of states
which are perfectly distinguishable under local measurements and one-way classical communication but very poorly
distinguishable under local measurements with no communication between the parties.

Theorem 2.3. There is a universal constant C > 0 such that the following holds: for any dimension d, there exist
states ρ and σ on Cd ⊗Cd such that ‖ρ− σ‖LOCC→ = 2 while ‖ρ− σ‖LO 6 C√

d
.

These states are constructed as follows: assuming without loss of generality that d is even, let E be a �xed d/2-
dimensional subspace of Cd, let U1, . . . , Ud be random independent Haar-distributed unitaries on Cd, and de�ne

the random states ρi = Ui
PE

d/2U
†
i and σi = Ui

P
E⊥
d/2 U

†
i , 1 6 i 6 d, on Cd (where PE and PE⊥ denote the orthogonal

projections onto E and E⊥ respectively). Then, denoting by {|1〉, . . . , |d〉} an orthonormal basis of Cd, de�ne

ρ =
1

d

d∑
i=1

|i〉〈i| ⊗ ρi and σ =
1

d

d∑
i=1

|i〉〈i| ⊗ σi.

The pair (ρ, σ) ful�ls the criteria of Theorem 2.3 with high probability.
Theorem 2.3 is built on the idea that, typically, a single POVM cannot succeed simultaneously in several �su�-

ciently di�erent� discrimination tasks. It is made mathematically precise by a careful use of nets and Bernstein-type
deviation inequalities in high dimension (a bit in the spirit of [3]).

3. Applications to data hiding

What Theorem 2.1 establishes is that generic bipartite states are data hiding for separable measurements but not
for PPT measurements. The following can more speci�cally be stated: picking a subspace E at random from the set
of d2/2-dimensional subspaces of Cd⊗Cd (assuming without loss of generality that d is even), and then considering

the states ρ = PE

d2/2 and σ =
P

E⊥
d2/2 , one gets examples of states which are perfectly distinguishable by some global
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measurement and which are with high probability data hiding for separable measurements but not data hiding for
PPT measurements. This somehow counterbalances the usually cited constructions of data hiding schemes using
Werner states, which are data hiding in the exact same way for both separable and PPT measurements (see e.g.
[9, 10, 11] and [19, 15]).

Also, we focused up to here on the bipartite case H = (Cd)⊗2 for the sake of clarity. However, generalizations to
the general k-partite caseH = (Cd)⊗k are quite straightforward, at least in the situation where the high-dimensional
composite system of interest is made of a �small� number of �large� subsystems (i.e. k is �xed and d tends to in�nity).

Let us denote by PPTd,k and SEPd,k the sets of respectively k-PPT and k-separable POVMs on (Cd)⊗k. A
multipartite analogue of Theorem 2.1 can then be derived, following the exact same lines of proof.

Theorem 3.1. There exist constants ck, Ck > 0 such that the following holds. Given a dimension d, let ρ and σ
be independent random states, uniformly distributed on the set of states on (Cd)⊗k. Then, with high probability,

ck 6 ‖ρ− σ‖PPTd,k
6 ‖ρ− σ‖ALL 6 Ck,

ck√
dk−1

6 ‖ρ− σ‖SEPd,k
6

Ck√
dk−1

.

This means that, forgetting about the dependence on k and only focusing on the one on d, for �typical� states

ρ, σ on (Cd)⊗k, ‖ρ− σ‖PPTd,k
is of order 1, like ‖ρ− σ‖ALL, while ‖ρ− σ‖SEPd,k

is of order 1/
√
dk−1.

In this multipartite setting, another quite natural question is the one of �nding states that local observers can
poorly distinguish if they remain alone but that they can distinguish substantially better though by gathering into
any possible two groups. This type of problem was especially studied in [11]. Here is another result in that direction.

De�ne bi− SEPd,k as the set of POVMs on (Cd)⊗k which are biseparable across any bipartition of (Cd)⊗k.
It may then be shown that for random states ρ, σ, independent and uniformly distributed on the set of states on
(Cd)⊗k, with high probability, ‖ρ − σ‖bi−SEPd,k

' d−k/4 (whereas ‖ρ − σ‖SEPd,k
' d−(k−1)/2 by Theorem 3.1).

This means that on (Cd)⊗k, with k > 2 �xed, restricting to POVMs which are biseparable across every bipartition
is roughly the same as restricting to POVMs which are biseparable across one (balanced) bipartition, whereas
imposing k-separability is a much tougher constraint that implies a dimensional loss in the distinguishing ability.

4. More general perspectives

We solved the issue of determining, for several classes of measurements M, what is the typical value of the
measured trace distance ‖ρ−σ‖M between two states ρ, σ. Several other ��ltered through measurements� distances
between ρ and σ can be de�ned in a completely analogous way, such as e.g. the measured �delity distance FM(ρ, σ)
or the measured relative entropy distance DM(ρ‖σ) (see e.g. [22]). These quantities are all closely related to one
another by well-known inequalities. Our statements can thus be straightforwardly translated into statements on the
typical value of FM(ρ, σ) or DM(ρ‖σ). Besides, such restricted distance measures have already found a tremendous
amount of applications in quantum information theory (see e.g. [6] or [18] for two very recent ones, in two quite
di�erent topics). Understanding better what is their generic scaling (and ultimately the one of their regularised
versions) is therefore of prime interest, amongst other, to assess how optimal are the bounds where they appear,
what is the e�ciency of the quantum information processing protocols where they are involved etc.
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