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In the theory of open quantum systems, an environment is usually treated as a large bath,

averaging out most of its dynamical details. Thus we do not see it as a quantum object that we

can control actively. It is indeed near-impossible to precisely identify the quantum nature of an

environment, let alone to control it at will. In this paper, we demonstrate how this formidable task

can be achieved, provided the dimension of the environment can be regarded as finite within the

timescale of our manipulation. The information thereby obtained will be useful not only for deeper

understanding of the system dynamics under decoherence but also for exploiting the environment

as a resource for quantum engineering, such as quantum computation.

We shall present a method to identify the Hamiltonian HSE , which describes the effective

interaction between the principal system S and the surrounding system E and (a part of) its

internal dynamics. We shall call E the environment symbolically throughout the paper. The

environment E is assumed to be finite dimensional, as we will formally state later, but its size

is unknown a priori. The knowledge of HSE is vital for controlling E as a useful system, not to

mention for checking its controllability.

Setup.– Let HS and HE be the Hilbert spaces of the principal system (S) and its environment

(E), whose dimensions are dS and dE , respectively. Then, the assumptions on which we base our

analysis are as follows.

(i) dE := dimHE is finite, although its value may be unknown.

(ii) Ancillary states, each of which is a maximally entangled pair, |Υa1a2⟩ = 1√
dS

∑dS
i=1 |ia1ia2⟩

can be provided abundantly. They will form the ancillary system A as the state-steering

protocol proceeds (see below). The interaction between A and E is negligible.

(iii) The state on HS ⊗HE can be initialised to a fixed (unknown) state |ΨSE(0)⟩.

(iv) Any quantum operations can be applied on SA instantaneously.
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State-steering protocol.– In order to make use of the ‘mirroring effect’ of entanglement to identify

HSE , we first need to steer the state on SEA to establish maximal entanglement between SE and

A. Let us describe how the state-steering protocol goes, and delineate why it works out for

our purpose. We start with an initial (fixed, but unknown) state ρ
(0)
SE and abundant copies of a

maximally entangled state |Υa1a2⟩. At t = 0, HA is a null space, supporting no states. The SWAP

operation between S and a1, which must be fast enough compared with the system dynamics, will

be denoted as SWAPSa1 . The C-th round of the protocol proceeds as follows (C starts from zero):

Step 1: Apply SWAPSa1 , where a1 is a subsystem of the newly provided |Υa1a2⟩, and then let A

incorporate a1 (the former S) and a2.

Step 2: Perform state tomography of ρA, and apply a local filtering operation FA
LF on ρA. If it fails,

carry out the whole protocol from the beginning.

Step 3: Let the SE system evolve for a time duration (< ∆tC) so that the functional of ρSA, ∆ESA,

which is defined below by Eq. (1), increases by ϵC > 0. See Sec. IV of the supplementary

material [1] as to how we should determine ∆tC and ϵC .

Step 4: Terminate the protocol if ∆ESA is found to be non-increasing; otherwise, let the SE system

evolve so that ∆ESA ≥ ϵC , and go back to Step 1.

The local filtering operation on ρA is written as FA
LFρA = FLFρAF

†
LF, where FLF =

√
λmin · ρ−1

A

with ρ−1
A the inverse of ρA on its support and λmin the smallest eigenvalue of ρA.

The quantity ∆ESA we measure in Step 3 is given as

∆ESA := S(ρSA)− S(ρA) + ln dS ,

= D(ρSE ||ρS ⊗ ρE) +D(ρS ||IS/dS). (1)

This equations implies that when ∆ESA = 0 there is a subsystem A1 of A that is maximally

entangled with S. Further, we expect that the remaining part A2 of A is maximally entangled with

E as a result of FA
LF. This naive guess is proven in detail in the supplementary material [1].

Note, however, that the argument in the supplementary material involves some mathematical

subtleties concerning multiple possibilities of the set (dE , |ΨSEA⟩,HSE) that leads to identical

observable dynamics on S and A. We call this set of three ingredients a triple. There can be

equivalent classes of triples, so that all triples within a single equivalent class give rise to the

identical observable dynamics on S and A, regardless of any active controls on them. For our
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purpose of controlling E, it suffices to identify one in the class for the observed time evolution on

SA. It is possible to prove that the resulting state of the state-steering protocol is in the same

equivalence class, in which A2 and E are maximally entangled as well as A1 and S are. [1].

Estimation of the Hamiltonian.– Now that we have two pairs of maximally entangled states, we

move on to the Hamiltonian identification stage. One of the well-known properties of maximally

entangled states is that an application of unitary operation on two subsystems at one side of the

pairs is equivalent to that of its transpose on the other side. For |ΨSEA⟩ that is entangled with

respect to the partition between SE and A, we can write

USE |ΨSEA⟩ = VA|ΨSEA⟩, (2)

where VA = UT
SE acting on HA. Therefore, the unitary evolution we observe on the ancillary system

A = A1A2 should contain information about the Hamiltonian HSE = i/t lnUSE(t). Naturally,

however, simply looking at the state of A does not reveal any information on USE , but it turns out

that identifying ρSA(t) by quantum state tomography suffices for our purpose. A specific method

of estimating the Hamiltonian HSE is given in the supplementary material [1].

The Hamiltonian HSE thereby estimated contains all the necessary information to characterise

the observable dynamics, albeit unmodulable per se. What we can control actively is the system

S. Thus, the dynamics of the entire system SE is governed by the Hamiltonian

H(t) = HSE +
∑
n

fn(t)H
(n)
S , (3)

where H
(n)
S are independent Hamiltonians that act on S and can be modulated by fn(t). As we

have already identifiedHSE , there is sufficient information to judge the controllability of the system

SE under this Hamiltonian (3). A theorem from the quantum control theory states that the set of

realisable unitary operations on the system is generated by dynamical Lie algebra [2]. Therefore,

our knowledge of HSE allows the controllable system to encompass not only the principal system S

but also (a part of) the environment E. That is, we are now able to exploit the dynamics inside E

for useful quantum operations, such as quantum computing, by controlling a small system S only.
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