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Recently, a variety of new measures of quantum Rényi mutual information and quantum
Rényi conditional entropy have been proposed, and some of their mathematical properties
explored. Here, we show that the Rényi mutual information attains operational meaning in
the context of composite hypothesis testing, when the null hypothesis is a fixed bipartite state
and the alternate hypothesis consists of all product states that share one marginal with the
null hypothesis. This hypothesis testing problem occurs naturally in channel coding, where
it corresponds to testing whether a state is the output of a given quantum channel or of a
“useless” channel whose output is decoupled from the environment. Similarly, we establish an
operational interpretation of Rényi conditional entropy by choosing an alternative hypothesis
that consists of product states that are maximally mixed on one system. Specialized to
classical probability distributions, our results establish an operational interpretation of Rényi
mutual information and Rényi conditional entropy.
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Introduction. In order to distill useful measures of Rényi mutual information and Rényi
conditional entropy from a plethora of possible definitions, it is important to find out which
definitions correspond to relevant operational quantities. For this purpose, let us consider how
efficiently an arbitrary bipartite correlated state ρAB on systems A and B can be distinguished from
product states when the marginal of ρAB on A is known to be ρA. This problem can be regarded as
the problem of detecting correlations in the state ρAB. Formally, we consider the following binary
composite hypothesis testing problem for n copies of such a state1:

Null Hypothesis: The state is ρ⊗nAB.

Alternate Hypothesis: The state is of the form ρ⊗nA ⊗ σBn with σBn any state on n copies of B.

This problem figures prominently when analyzing the converse to various channel coding
questions in classical as well as quantum information processing.2 There, the problem is specified
by a description of a channel EA′→B and a bipartite state ρAA′ where the system A constitutes an
environment of the channel, A′ is the channel input, and B its output. We are given an unknown
state on n copies of A and B and consider the following two hypotheses.

Null Hypothesis: The state is the output of n uses of the channel EA′→B, namely the state is
exactly ρ⊗nAB where ρAB := EA′→B[ρAA′ ].

Alternate Hypothesis: The state is the output of a “useless” channel and decoupled from the
environment, namely it is of the form ρ⊗nA ⊗ σBn with σBn any state on n copies of B.

1 We want to consider the speed with which the probability that we erroneously support the state ρ⊗nAB when the
actual state is a product state of the form ρ⊗nA ⊗ σ⊗nB under a constraint for the opposite error. As is explained
later, this problem can be discussed as the Hoeffding bound and Stein’s lemma under this formulation.

2 There exists an intimate connection between quantum channel coding and binary hypothesis testing (see, e.g., [8]).
This connection is particularly important when analyzing how much information can be transmitted with a single
use of a quantum channel [11, 23] or when approximating how much information can be transmitted with finitely
many uses of the channel [3, 22]. (See also [7, 19] for the classical case. In particular, Polyanskiy [18, Sec. II]
discusses the classical special case of this hypothesis testing problem.)
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A hypothesis test for this problem is a binary positive operator-valued measure {QAnBn ,1AnBn−
QAnBn} on the n copies of the systems A and B, determined by an operator 0 ≤ QAnBn ≤ 1AnBn .
If the operator QAnBn “clicks” on our state, we conclude that the null hypothesis is correct,
whereas otherwise we conclude that the alternate hypothesis is correct. The error of the first
kind, αn(QAnBn), is defined as the probability with which we wrongly conclude that the alternate
hypothesis is correct even if the state is ρ⊗nAB, given by

αn(QAnBn) = tr[ρ⊗nAB(1AnBn −QAnBn)]. (1)

Conversely, the error of the second kind, βn(QAnBn), is defined as the probability with which we
wrongly conclude that the null hypothesis is correct even if the state is of the form ρ⊗nA ⊗ σBn for
some σBn , given by

βn(QAnBn) = max
σBn

tr[ρ⊗nA ⊗ σBn QAnBn ], (2)

where the maximum is taken over all states σBn on n copies of B.
Main Results. The main contribution of this paper is an asymptotic analysis of the fundamental

trade-off between these two errors as n goes to infinity. To investigate this trade-off, we ask the
following questions: let us assume that our test is such that βn(QAnBn) ≤ exp(−nR), what is the
minimum value of αn(QAnBn) we can achieve? The answer is different depending on whether R is
smaller or larger than the mutual information between A and B, denoted I(A :B)ρ. If R < I(A :B)ρ,
we show that the minimal error of the first kind vanishes exponentially fast in n. This implies a
quantum Stein’s lemma [9] for the above composite hypothesis testing problem.

More formally, we define

α̂n(nR) = min
0≤QAnBn≤1

{
αn(QAnBn ; ρAB)

∣∣∣βn(QAnBn) ≤ exp(−nR)
}

(3)

and investigate the exact exponents with which this error vanishes as n goes to infinity, yielding a
quantum Hoeffding bound [6, 15] for our composite hypothesis testing problem. We find that the
exponents are determined by the Rényi mutual information, defined as

Iα(A :B)ρ = min
σB

Dα(ρAB‖ρA ⊗ σB), for α ∈ (0, 1), (4)

where Dα(ρ‖σ) := 1
α−1 log tr

[
σ

1−α
2 ρασ

1−α
2

]
is the Rényi relative entropy first investigated by Petz

(see, e.g. [17]) and the minimization is over all states σB on B. We obtain

lim
n→∞

{
− 1

n
log α̂n(nR)

}
= sup

s∈(0,1)

{
1− s
s

(
Iα(A :B)ρ −R

)}
. (5)

On the other hand, if R > I(A :B)ρ, we show that α̂n(R) must approach one exponentially fast
in n. This implies the strong converse for quantum Stein’s lemma [16] for our problem. We then
find the exact exponents (also called strong converse exponenents, see [5, Ch. 3] and [12, 16]) with
which the error of the first kind goes to one as n goes to infinity and we find that in our case the
exponent is determined by the sandwiched Rényi mutual information [1, 4], given as

Ĩα(A :B)ρ = min
σB

D̃α(ρAB‖ρA ⊗ σB), for α > 1, (6)

where D̃α(ρ‖σ) := 1
α−1 log tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
is the (sandwiched) Rényi divergence [14, 24]. We

obtain

lim
n→∞

{
− 1

n
log
(
1− α̂n(nR)

)}
= sup

s>1

{
s− 1

s

(
R− Ĩs(A : B)ρ

)}
. (7)
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Hence, we show that the above composite hypothesis testing problem yields an operational
interpretation for different definitions of the Rényi mutual information for the two ranges of α,
paralleling the observation in [12].

Finally, we also perform a second-order analysis for quantum Stein’s lemma [10, 21] and show that
the minimal error of the first kind converges to a constant if βn(QAnBn) ≤ exp(−nI(A :B)ρ −

√
nr)

for some r ∈ R. Then, for any r ∈ R, we have

lim
n→∞

{
α̂n
(
nI(A :B)ρ +

√
n r
)}

= Φ

(
r√

V (A :B)ρ

)
, (8)

where Φ is the cumulative standard normal (Gaussian) distribution and

V (A :B)ρ := tr
[
ρAB

(
log ρAB − log ρA ⊗ ρB − I(A :B)ρ

)2]
. (9)

is the mutual information variance.
Conditional Entropy. Analogously, an operational interpretation for conditional Rényi entropies

is established by considering the following binary hypotheses testing problem, which is motivated
by the task of decoupling of quantum states. The problem is specified by a description of a state
ρAB. Given an unknown state on A and B, consider the following two hypotheses:

Null Hypothesis: The state is the n-fold product of ρAB, namely ρ⊗nAB.

Alternate Hypothesis: The state is uniform on An and decoupled form Bn, i.e. it is of the form
π⊗nA ⊗ σBn , where πA is the fully mixed state on A.

The same analysis as above applied to this problem reveals that the exponents in the quantum
Hoeffding bound are determined by the Rényi conditional entropies defined as [20]

H↑α(A|B)ρ = −min
σB

Dα(ρAB‖1A ⊗ σB), for α ∈ (0, 1) , (10)

and the strong converse exponents are determined by the sandwiched conditional Rényi entropies [14]

H̃↑α(A|B)ρ = −min
σB

D̃α(ρAB‖1A ⊗ σB), for α > 1 . (11)

Main Proof Ideas. The main ideas are quickly summarized as follows:

1. We show that there exists a test (a different one in the direct and converse regime, respectively)
which works uniformly for all choices of σBn by using some elementary tools from group
representation theory. Various tools, including a new minimax theorem are derived in order
to prove the quantum Hoeffding bound.

2. To investigate the strong converse exponents, we show that the sandwiched Rényi mutual
information can be achieved by pinching and show various other properties, including that
it is differentiable in α for all α ≥ 1

2 . Then, we use the Gärtner-Ellis theorem for the large
deviation analysis of the correlated distributions that result from pinching.

Related Work. Complementary and concurrent to this work, Cooney et al. [2] investigated the
strong converse exponents for a similar hypothesis testing problem when adaptive strategies are
allowed — however, they did not treat the case of a composite alternate hypothesis and they also
did not analyze the error exponents in the quantum Hoeffding bound.

Our proof of the strong converse exponents parallels the development in a very recent preprint
by Mosonyi and Ogawa [13]. There, the authors consider correlated states and use the Gärtner-Ellis
theorem of classical large deviation theory in order to investigate the asymptotic error exponents
in the presence of correlations. Here, we are not interested in correlated states per se, but our
proof technique based on pinching naturally leads us to a classical hypothesis testing problem with
correlated distributions, for which the Gärtner-Ellis theorem again provides the right solution.
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