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We consider the problem of when two parties can, using local operations and public commu-
nication (LOPC), reversibly distill secret key from a tripartite probability distribution pXY Z shared
between themselves and an eavesdropper. This is compared to the analogous quantum problem of en-
tanglement distillation under local operations and classical communication (LOCC). We first prove
a strong necessary condition on the type of distributions that exhibit secret key reversibility. We
identify a non-trivial class of distributions that satisfy this condition, and further show that two-way
public communication is generally required to attain reversible secrecy. An indispensable tool used
in our analysis is a conditional form of the Gács and Körner common information.

Our results are then translated into the quantum setting where we embed reversible distributions
into quantum states and compare the related quantum distillation rates of both key and entanglement.
It is found that the gap between the quantum rates and the classical key rate can be arbitrarily large
in both directions. A wide class of binary distributions are presented that demonstrate classical
key reversibility but fail to demonstrate entanglement reversibility when embedded into a quantum
state. For such distributions, the classical key rate for certain reversible distributions is related to
the concurrence entanglement measure of the embedded quantum state. When Eve’s variable is a
function of Alice and Bob’s, the quantum and key rates are shown to coincide.

Inspired by the conceptual successes of entanglement theory, researchers have recently begun applying a resource-
theoretic perspective toward the classical problem of secret key agreement by public discussion [1, 2]. Whereas the
states in quantum information are density operators, the physical states in classical information theory are probability
distributions. Analogous to entanglement, secrecy held against an unwanted eavesdropper can be regarded as a
resource in the classical setting [3, 4].

While entanglement and secrecy have many formal similarities [3–11], this work focuses on the similarities that lie
in the tasks of resource distillation and resource cost. Just as pure quantum states demonstrate reversible entanglement
dilution and concentration by LOCC, we are interested in understanding when secrecy becomes a reversible resource
by LOPC. The problem of secrecy reversibility asks the following: given a distribution pXY Z , decide ifKD(pXY Z) =
KC(pXY Z), where KD(pXY Z) is the secret key rate [1, 2] and KC(pXY Z) is the secret key cost [12, 13].

To address the question of secrecy reversibility, a main tool we use is the common information between two
random variables, JXY , as introduced by Gács and Körner [14]. We generalize this to a conditional common function
JXY |Z and use it to formulate and prove many of our results (See Section 2.2 in the supplemental material). We
introduce the following classes of distributions that will play a crucial role in the study of reversible secrecy.
Definition: A distribution pXY Z is said to be (also see Fig. 1 in the supplemental material):

• Block independent (BI) if I(X : Y |JXY |ZZ) = 0 for any maximal conditional common function JXY |Z .

• Uniform block independent (UBI) if it is block independent and if there exists some maximal conditional
common function JXY |Z such that H(JXY |Z |X) = H(JXY |Z |Y ) = 0.

• Uniform block independent under public discussion (UBI-PD) if it is block independent and if there exists
some maximal conditional common function JXY |Z such that H(JXY |Z |XJY Z) = H(JXY |Z |Y JXZ) = 0.

Example distributions are shown and discussed in Figure 1 (also see Figure 1 in the supplemental material).

Secrecy Reversibility:
We now use these definitions to state our main results.

Theorem 1. A distribution pXY Z has KC(pXY Z) = KD(pXY Z) iff there exists a channel Z|Z such that pXY Z is BI
and I(X : Y |Z) is an achievable key rate.

What sort of distributions satisfy the conditions of Theorem1?
Lemma 1. If pXY Z is UBI-PD, then KC(pXY Z) = KD(pXY Z) = H(JZ |Z).

In the supplemental material we identify a more general class of reversible distributions that we denote by UBI-PD↓.
Compared to UBI-PD, distributions from UBI-PD↓ have a much more complicated structure.
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FIG. 1. (a) A BI but not UBI-PD dis-
tribution. Given Z, Alice and Bob’s
distribution decomposes into indepen-
dent blocks. (b) A UBI-PD distribu-
tion. Note that, once Alice publicly
announces whether X ∈ {0, 1, 2} or
X ∈ {3, 4, 5} (which is information al-
ready known to Eve), Alice and Bob
know what block their event (X,Y ) be-
longs to for each value of Z.

Communication Dependency in Reversible Distillation:
To understand the role of communication in secrecy reversibility, we consider optimal secret key distillation rates

by one-way communication. Here, we use Ahlswede and Csiszar’s classic single-letter formula for the one-way rate−→
KD(pXY Z) [2] to obtain the following technical tool.

Proposition 1. Distribution pXY Z satisfies
−→
KD(pXY Z) = I(X : Y |Z) iff there exists variables KUXY Z with K

and U ranging over sets of size no greater than |X |+ 1 such that

(1) KU −X − Y Z, (2) X −KUZ − Y,
(3) U − Z − Y, (4) K − Y U − Z. (1)

Using this proposition, the following observations are shown: (i) attaining reversible key distillation by one-way
communication depends on the direction of the communication, and (ii) two-way communication may be necessary
in order to achieve reversible distillation. While these facts may not be overly surprising at first sight, we note that
for the analogous problem of entanglement distillation from quantum states, all known examples of reversibility have
protocols that attain reversibility with one-way communication, regardless of the communication direction [15–17].

Classical Embeddings in Quantum States
Let pXY Z be a fixed triparite probability distribution, and let {|x〉}dA−1x=0 , {|y〉}dB−1y=1 , and {|z〉}dE−1z=0 be a fixed or-
thonormal basis for Alice, Bob, and Eve’s system, respectively. A qqq embedding of the distribution pXY Z is the
tripartite pure state

|ΨABE〉 =
∑
xyz

√
p(xyz)|xyz〉.

and ρAB = trEΨABE is Alice and Bob’s corresponding reduced state.
For the quantum states associated with pXY Z , there are three primary rates of interest: (1) KD(ΨABE): the

LOPC rate of key distillation from |ΨABE〉 (see Ref. [8] for a formal definition); (2) ED(ρAB): the LOCC rate of
entanglement distillation from ρAB [18]; (3) EC(ρAB): the LOCC rate of entanglement cost for the creation of ρAB

[19]. We compare these quantities to the key cost rate KC(pXY Z) and key distillation rate KD(pXY Z) when the
underlying distribution pXY Z has reversible secrecy.

When distilling classical key, the adage “quantum is more powerful than classical” holds true, but the question is
whether “quantum Eve” becomes more powerful than “quantum Alice and Bob” when embedding pXY Z → |ΨABE〉.
For example, from the state |ΨABE〉, all 3 parties could recover the encoded distribution pXY Z as a “classical state”∑

xyz p(xyz)|xyz〉〈xyz| simply by dephasing, in which case Alice and Bob could distill KD(pXY Z) asymptotically.
However, as the adversary, dephasing may not be Eve’s optimal strategy, and so we cannot simply conclude that
KD(ΨABE) ≥ KD(pXY Z). A gap KD(pXY Z) > KD(ΨABE) means that Alice and Bob gain more from the
quantum embedding than Eve, while a gap KD(ΨABE) > KD(pXY Z) indicates that Eve gains more. We find, by
building off our classical analysis, that both scenarios can occur, and no general bounds exist between KD(pXY Z)
and KD(ΨABE).

The bulk of our work investigates when gaps do and do not exist between the various rates under a qqq embedding.
While partial results have been previously obtained on this topic [8, 11], here we provide a number of new findings
based on our analysis of secrecy reversibility. Our results are partially summarized in Table I. To draw comparisons
between the classical and quantum rates, we also make use of the following well-known upper bounds on the quantum
rates: (a) the relative entropy of entanglement Er(ρAB) [20]; (b) the squashed entanglement Esq(ρAB); [21]; (c) the
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Type of Distribution
Relationship between

Classical key rate, Quantum key rate, and Entanglement

General
Arbitrary gaps; i.e. there exists no N1 ≥ 0 or N2 ≥ 0 such that

−N1 ≤
(
KD(pXY Z)−KD(ΨABE) ∨ ED(ρAB)

)
≤ N2 ∀pXY Z .

[Supp. Mat. Proposition 7 and Corollary 3]

Secrecy Reversible KD(pXY Z) ≥ Esq(ρAB).
[Supp. Mat. Theorem 3]

Secrecy Reversible
+ UBI-PD

KD(pXY Z) ≥ EF (ρAB).
Two qubits: KC(pXY Z) = KD(pXY Z) but

EC(ρAB) > ED(ρAB) unless ρAB is pure or separable.
[Supp. Mat. Theorem 3 and Lemma 5]

Secrecy Reversible
+ Semi-unambiguous

KC(pXY Z) = Esq(ρAB) = KD(ΨABE) = KD(pXY Z).
[Supp. Mat. Corollary 4]

Secrecy Reversible
+ UBI-PD
+ Semi-Unambiguous

KC(pXY Z) = EF (ρAB) = Esq(ρAB) = Er(ρAB) = KD(ΨABE) = KD(pXY Z).
[Supp. Mat. Corollary 4]

TABLE I. A comparison of distillation rates and entanglement measures for various types of distributions pXY Z and
their embedding into quantum states |ΨABE〉 and ρAB . Semi-unambiguous distributions were studied in Ref. [8]
and can be given the entropic characterization of H(Z|XY ) = 0. All relationships are proven in the supplemental
material.

entanglement of formation EF (ρAB) [22]. Recall that KD(ΨABE) and ED(ρAB) are both upper bounded by the
relative entropy of entangled Er(ρAB), as well as the squashed entanglement Esq(ρAB) [23–25].

For binary UBI-PD distributions, we are able to exactly compute the gap between KD(pXY Z) and EF (ρAB).

Lemma 2. If pXY Z is a uniformly block independent distribution with |X | = |Y| = 2, then

KD(pXY Z) =
∑
z∈Z

p(z)E
(

2
√
p(0|z)p(1|z)

)
EF (ρXY ) = E

(
2
∑
z∈Z

p(z)
√
p(0|z)p(1|z)

)

where E(x) := h(12 [1−
√

1− x2]) and h(x) := −x log x−(1−x) log(1−x). Note that E(x) is a convex function, so
this theorem shows KD(pXY Z) ≥ EF (ρXY ) for UBI distributions in two qubits. Also, observe that EF (ρAB) = 0
iff KC(pXY Z) = KD(pXY Z) = 0.

Discussion and Conclusion
In this work we have studied the problem of secrecy reversibility and related it to the entanglement structure of

embedded qqq states. From the work of Renner and Wolf [12], it was previously known that having reversible secrecy
requires a key rate equal to the intrinsic information. Our work adds the strong structural constraint that Eve’s optimal
channel must leave the distribution block independent. Our findings also nicely complement the work of Horodecki
et al. who showed that key cost of pXY Z will equal the intrinsic information whenever pXY Z can be built from a
mixture of private distributions, each with a key cost given by the mutual information. Our Theorem 1 shows that
block independent distributions are precisely this class of distributions requiring

∑
z p(z)I(X : Y |Z = z) secret bits

to generate.
We were able to identify a class of non-trivial distributions that demonstrate secrecy reversibility, which we have

called UBI-PD↓. We further offered an example showing that attaining reversible secrecy can require two-way com-
munication. This is perhaps an unexpected finding considering that all known reversible entanglement distillation
protocols are one-way.

We have examined the properties of quantum states obtained through a qqq embedding of reversible distributions.
It was shown that no general relationship exists between the classical key rate, the quantum key rate, and the en-
tanglement distillation rate. In fact, we have succeeded in showing arbitrarily large gaps between the quantum and
classical rates. Using the structure of two-qubit entangled states, we were able to prove that unless the state is pure or
separable, all two-qubit UBI embeddings lack entanglement reversibility, despite the fact that they are generated by
reversible classical distributions.

Just as entanglement can be understood as a physical resource useful for performing certain tasks, classical secrecy
can be given a similar resource-theoretic interpretation. We hope this paper helps advance the understanding of
secrecy as a fungible resource and its relationship to entanglement.
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