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Entanglement plays a central role in quantum information processing and is an essential resource for classical
distributed tasks such as unconditionally secure cryptography [Eke91], randomness certification [Col06, PAM+10]
and expansion [VV12, CY13] and others. Hence, given such a distributed task one is interested in understanding
what is the optimal entangled strategy and how much and what kind of entanglement does it require. As is com-
monly done, we use the framework of nonlocal games to study these questions. In physics nonlocal games appear
as Bell inequalities while in computer science they arise as multi-prover interactive proof-systems (MIP).

A nonlocal game consists of two separated parties, Alice and Bob, and a verifier. To play the gameG = (V,π),
the verifier draws (q, r) ∈ QA ×QB according to π and sends q to Alice and r to Bob. Alice and Bob must then
respond with answers a and b from finite sets AA and AB respectively. The players win if they satisfy the
verification predicate V(a,b|q, r) = 1. Alice and Bob cannot communicate after receiving the question, however
they can agree on a strategy beforehand. To do so they may use their knowledge of the distribution π and the
predicate V .

The goal of the players is to win with as high a probability as possible. The classical value of a game is the
maximum winning probability over all classical strategies. Similarly, the entangled value, ω∗(G), of a game G is
the supremum of winning probabilities taken over all entangled strategies. A entangled strategy allows the players
to determine their answers by performing measurements on a shared entangled state. We say that an (entangled)
strategy for a nonlocal game is perfect if it wins with probability one.
Given a nonlocal game G, one is often interested in

1. computing the entangled valueω∗(G);

2. understanding how much and what kind of entanglement is needed to achieveω∗(G);

3. deciding ifω∗(G) = 1 and if perfect success can be achieved by a finite-dimensional strategy.
Despite the efforts no algorithm is known for computingω∗(G) or even deciding ifω∗(G) = 1. Another recurrent
sticking point is the achievability of ω∗(G) which relates to the more general question of whether the set of
quantum correlations p(a,b|q, r) is closed or not. Finally, it has remained out of reach to understand if maximally
entangled state and/or projective measurements are sufficient if one is only interested in perfect strategies. In view
of the lack of progress in understanding these basic questions and with the hope to get new insights, we alter the
setup slightly by restricting the entangled players in one of the following two ways:

1. the players are only allowed to use projective measurements on a maximally entangled shared state;

2. the players are only allowed to use a certain subset of the quantum correlations p(a,b|q, r) defined via a
system of linear equations.

We give two necessary and sufficient conditions for a game to have a perfect projective strategy using a maxi-
mally entangled state. One of these conditions can be viewed as identifying a complete problem among the decision
problems of the type “Does G admit a perfect projective strategy with maximally entangled state?”. In addition we
give a graph-theoretic lower bound on the entangled value of a nonlocal game.

1A technical version of this work is attached to the EasyChair submission.
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1 Correlated games

As a first step we identify a class of games for which if there exists some perfect entangled strategy, there also
exists one with projective measurements and the maximally entangled state.

Definition 1. A nonlocal game G is called correlated if it satisfies the following two properties: (i) AA = AB and
QA = QB; (ii) when asked the same question, the players must respond with the same answer.

In the case of correlated games, we can show that the existence of a perfect entangled strategy of a particular
form.

Lemma 1. Let G be a correlated game having a perfect entangled strategy. Then there also exists a perfect
strategy for G that is projective, uses the maximally entangled state, and Bob’s projectors are the transpose of the
corresponding projector of Alice’s.

The above lemma is the key to analyze correlated games using the game graphs we will define below. Essen-
tially it allows us to consider only one player’s measurements instead of both.

The majority of our results apply directly to correlated games. However, in order to apply our results to a
general nonlocal game G, we define a correlated extension of G, denoted G̃, for which we are able to prove the
following:

Lemma 2. A gameG has a perfect projective strategy with maximally entangled state if and only if G̃ has a perfect
entangled strategy.

One consequence of this lemma is that if one were able to show that a nonlocal game G admits a perfect
entangled strategy if and only if its correlated extension admits an perfect entangled strategy, then they would
have shown that one can restrict to projective measurements and the maximally entangled state when searching for
perfect quantum strategies. This could potentially make the question of the existence of perfect quantum strategies
much more manageable.

2 Game graphs and projective packings

Given a correlated game G with question and answer setsQ and A respectively, we associate to G its game graph,
which we denote X(G). The graph X(G) has vertex set A ×Q such that (a,q) is adjacent to (a ′,q ′) if this pair
of questions and answers result in a loss for Alice and Bob.

The game graph allows us to use tools from the field of graph theory to obtain two necessary and sufficient
conditions for the existence of a perfect entangled strategy for a correlated game. We are also able to use it to prove
a lower bound on the entangled value of a correlated game.

A projective packing [Rob13] of a graph is an assignment of d-dimensional projectors to its vertices such that
adjacent vertices are assigned orthogonal projectors. The value of a projective packing is the sum of the ranks of
the projectors divided by the dimension d. The projective packing number of a graph X, denoted αp(X) is the
supremum of values over all projective packings of X. Using Lemma 1, we are able to prove the following:

Lemma 3. Let G be a correlated game with question setQ. Then G has a perfect entangled strategy if and only if
X(G) has a projective packing of value |Q|.

We are also able to provide a lower bound on the entangled value of a correlated game through the use of
projective packings:

Theorem 1. Let G be a correlated game with uniform input distribution, question set Q, answer set A and let

X = X(G) be the associated game graph. Then,ω∗(G) >
(
αp(X)
|Q|

)2
.
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3 Game graphs and quantum independence number

An independent set in a graph is a set of pairwise nonadjacent vertices. The independence number of a graph X is
the maximum size of an independent set of X.

The quantum independence number [RM14] of a graph X, denoted αq(X), is defined via a nonlocal game
as follows: Alice and Bob receive questions i, j ∈ [k] respectively and must answer with vertices u, v of X. In
order to win, they must both output the same vertex if they receive the same input, and they must output distinct
nonadjacent vertices if they receive different inputs. Maximizing over k such that there exists a perfect entangled
strategy yields the quantum independence number.

Note that the independent set game is a correlated game. It turns out that this is in fact the “hardest” correlated
game2 in a sense made rigorous by the following lemma:

Lemma 4. Let G be a correlated game with question setQ. Then G has a perfect entangled strategy if and only if
αq

(
X(G)

)
= |Q|.

By this lemma, any algorithm which can determine if the independent set game has a perfect entangled strategy
could be used to determine if any correlated game has a perfect entangled strategy.

Using Lemma 2, we can obtain results similar to Lemma 3 and Lemma 4 for arbitrary nonlocal game.

Theorem 2. Let G be a game with question sets QA and QB for Alice and Bob respectively, and let G̃ be its
correlated extension. Then the following are equivalent:

1. the game G has a perfect projective strategy with maximally entangled state;

2. the graph X(G̃) has a projective packing of value |QA|+ |QB|;

3. it holds that αq
(
X(G̃)

)
= |QA|+ |QB|.

4 Approximate Homomorphisms

Given sets Q and A, a correlation p(a,b|q, r) is synchronous[PSS+14] if p(a = b|q = r) = 1 for all q, r ∈ Q
and a,b ∈ A. Let Ls(Q,A) denote the set of classical synchronous correlations and Qs(Q,A) denote the set of
quantum synchronous correlations.

Using the notion of synchronous correlations and the homomorphism game introduced in [RM14], we define
the following:

Definition 2. For graphs X and Y, let A(X → Y) be the maximum value q such that there is a p(y,y ′|x, x ′) ∈
Ls(X, Y ∪ {∅}) satisfying p(y,y ′|x, x ′) = 0 for all x ∼ x ′ and y,y ′ ∈ V(Y),y 6∼ y ′, and p(y = ∅|x) = 1− q for
all x ∈ V(X). Let A(X

q→ Y) be defined simjilarly but over Qs(X, Y ∪ {∅}).

Definition 3. For graphs X and Y, let B(X → Y) be the maximum value q such that there is a p(y,y ′|x, x ′) ∈
Ls(X, Y) satisfying p(y ∼ y ′|x, x ′) = q for all x ∼ x ′. Let B(X

q→ Y) be defined similarly but over Qs(X, Y).

Another way of formulating B(X
q→ Y) is as the optimal entangled value of the (X, Y)-homomorphism game

restricted to synchronous correlations which satisfy p(y ∼ y ′|x, x ′) = p(y ∼ y ′|x ′′, x ′′′) for all x ∼ x ′ and
x ′′ ∼ x ′′′, and such that the input distribution is the uniform distribution over the edges of X. The value A(X

q→ Y)
can be similarly defined as the entangled value of a nonlocal game.

Theorem 3. If a graph X has at least one edge, then B(X
q→ K2) is a function of the Lovász theta number of X

and B(X→ K2) is a function of the cubical chromatic number of [Š14].

Theorem 4. A(X → K1) = 1/χf(X) and A(X
q→ K1) = 1/ξf(X) where χf is the fractional chromatic number

and ξf is the projective rank of [RM14].

2Using a different technique a similar result has independently been obtained by Z. Ji.
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