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Abstract

Isolated qubits are a special class of quantum devices, which can be used to implement tamper-
resistant cryptographic hardware such as one-time memories (OTM’s). Unfortunately, these OTM
constructions leak some information, and standard methods for privacy amplification cannot be
applied here, because the adversary has advance knowledge of the hash function that the honest
parties will use.

In this paper we show a stronger form of privacy amplification that solves this problem, using
a fixed hash function that is secure against all possible adversaries in the isolated qubits model.
This allows us to construct single-bit OTM’s which only leak an exponentially small amount of
information.

We then study a natural generalization of the isolated qubits model, where the adversary is
allowed to perform a polynomially-bounded number of entangling gates, in addition to unbounded
local operations and classical communication (LOCC). We show that our technique for privacy
amplification is also secure in this setting.

1 Introduction

Can one build tamper-resistant cryptographic hardware whose security is based on the laws of quan-
tum mechanics? This is a natural question, as there are many unusual phenomena in quantum
mechanics, such as the impossibility of cloning an unknown quantum state, which seem relevant to
cryptography. However, despite these encouraging signs, it turns out that many common crypto-
graphic functionalities, such as bit commitment and oblivious transfer (with information-theoretic
security), cannot be implemented in a quantum world [1, 2, 3, 4].

Recently, there has been progress using a different approach to this problem, called the “isolated
qubits model” [5, 6]. Isolated qubits are qubits with long coherence times, which can only be
accessed using single-qubit gates and measurements; entangling operations are forbidden. Thus,
in the isolated qubits model, one assumes an additional restriction on what the adversary can do.
Formally, the adversary is only allowed to perform local operations and classical communication,
or LOCC, where “local operations” are operations on single qubits, and “classical communication”
refers to communication between the qubits. (Likewise, honest parties are also restricted to LOCC.
Furthermore, while the adversary can perform an unbounded number of operations, all honest parties
must run in polynomial time.) Isolated qubits can be viewed as special-purpose quantum devices,
which can implement functionalities such as oblivious transfer that are not possible using quantum
mechanics alone. Isolated qubits could conceivably be implemented using solid-state nuclear spins,
such as quantum dots or nitrogen vacancy centers [7, 8].
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Using isolated qubits, there are natural candidate constructions that lead to a variety of tamper-
resistant cryptographic hardware. The first step is to construct one-time memories (OTM’s) [5].
Intuitively, a one-time memory is a device that does non-interactive oblivious transfer, i.e., Alice
programs the device with two messages s and t, then gives the device to Bob, who can choose to
read either s or t (but not both).

Using one-time memories, one can then construct one-time programs [9, 10, 11, 12], which are
useful for program obfuscation, access control and copy protection. A one-time program is a program
that can be run only once, and hides its internal state. More precisely, Alice chooses some circuit
C, compiles it into a one-time program, and gives it to Bob; Bob then chooses an input x, runs the
one-time program, and learns the output of the computation C(x); but Bob learns nothing else, and
cannot run the program on another input.

Unfortunately it is not yet possible to prove the security of these one-time programs in the isolated
qubits model. This is because the proof of security for the one-time memories in [5] is not strong
enough — it allows some extra information to leak to the adversary, and it does not compose securely
when the one-time memories are used as part of a larger construction.

In this paper we address the issue of information leakage, by developing a privacy amplification
technique that works in the isolated qubits model.

1.1 Privacy amplification

The candidate construction for one-time memories in [5] was proven to satisfy a “leaky” definition of
security, where up to a constant fraction of the bits of the messages could be leaked to the adversary.
This notion of security was not as strong as one would have liked, but on the positive side, the
adversary’s uncertainty was expressed in terms of the smoothed min-entropy, which suggested that
the leakage problem might be addressed using some kind of privacy amplification.

However, there is an obstacle to using privacy amplification with our one-time memories. Usually,
in privacy amplification, the adversary has partial information about some string s (while the honest
parties have complete knowledge of s). Then the honest parties choose a random seed q, and apply
a hash function Fq to produce a shorter string Fq(s), which will be almost completely unknown to
the adversary. This works provided that the random seed q is chosen independent of the adversary’s
actions.

But in the case of our one-time memories, all the information needed to decode the messages —
including the random seed q — must be provided at the beginning, before the adversary decides how
to attack the OTM (i.e., what measurement to perform on the qubits). Thus the adversary’s attack
can depend on q, and so standard methods of privacy amplification may not be secure.

We show a variant of privacy amplification which uses a fixed hash function F (without a random
seed), and is secure in the isolated qubits model. Intuitively, this relies on two ideas. First, we use a
stronger family of hash functions, namely r-wise independent functions, where r grows polynomially
in the security parameter k. These r-wise independent functions can be computed efficiently, but
they behave more like truly random functions, in that they satisfy large-deviation bounds, similar
to Hoeffding’s inequality [13, 14, 15].

Second, we exploit the fact that the only way for the adversary to learn about s is by performing
LOCC measurements on the qubits that encode s. Rather than considering all possible LOCC
measurement strategies, which are represented by decision trees, we consider all possible LOCC
measurement outcomes, which are represented by POVM elements.1 Due to the LOCC restriction,
these POVM elements are tensor products of single-qubit operators. So there are not too many of
them. Say we discretize the set of possible measurement outcomes, with some fixed resolution.2 Then
the number of LOCC measurement outcomes grows exponentially with the number of qubits; this is
in contrast with the number of entangled measurement outcomes, which grows doubly-exponentially
with the number of qubits. Hence we can use a union bound over the set of all LOCC measurement
outcomes.

1POVM elements are defined in Section 2.2, but we do not require these formal definitions here.
2Formally, we consider an ε-net, as defined in Section 2.1.
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We do privacy amplification as follows. We first choose a hash function F from an r-wise inde-
pendent family. We then fix F permanently, and announce it to the adversary. We claim that, with
high probability over the choice of F , this privacy amplification scheme will be secure against all
possible LOCC adversaries, i.e., every adversary who uses LOCC measurements and gains at most
partial information about the string s, will still have very little information about F (s).

The proof uses a covering argument over the set of all LOCC measurement outcomes. First, fix
some particular LOCC measurement outcome M . Let S be the random variable representing the
string s, and suppose the hash function F outputs a single bit F (S). One can calculate the bias of
the bit F (S), conditioned on having observed outcome M , as follows:

ES((−1)F (S) |M) =
∑

s

(−1)F (s) Pr(S = s |M). (1)

(Here ES denotes the expectation value obtained by averaging over S.)
We want to show that ES((−1)F (S) |M) is small. Notice that ES((−1)F (S) |M) is a linear com-

bination of terms (−1)F (s), where each F (s) is a random variable describing the initial choice of the
hash function F . We can use Hoeffding-like inequalities to show that, with high probability over
the choice of F , ES((−1)F (S) |M) is sharply concentrated around 0. This will work provided that∑

s Pr(S = s |M)2 is small, which follows since the Renyi entropy H2(S|M) (or the smoothed min-
entropy Hε

∞(S|M)) are large, which holds since the adversary has at most partial information about
S. Thus, one can conclude that, for a fixed LOCC measurement outcome M , with high probability
over the choice of F , ES((−1)F (S) |M) is small, i.e., privacy amplification succeeds.

Finally, one uses the union bound over all LOCC measurement outcomes M . This shows that,
with high probability over the choice of F , for all LOCC measurement outcomes M , privacy ampli-
fication succeeds. This completes the proof.

The above sketch shows privacy amplification for a single string s, but the same technique can
be applied to an OTM that stores two strings. Formally, one can show a reduction from an almost-
perfect single-bit OTM to a leaky string-OTM. (That is, given an OTM that stores two strings and
leaks a constant fraction of the information, one can construct an OTM that stores two bits and
leaks an exponentially small amount of information.) By combining with the results of [5], we get
almost-perfect single-bit OTM’s in the isolated qubits model.

1.2 Beyond the isolated qubits model

Next, we study a generalization of the isolated qubits model, where the adversary is allowed to
perform a polynomially-bounded number of 2-qubit entangling gates, in addition to unbounded
LOCC operations. More precisely, this model is specified by a “depth” parameter d, which can grow
polynomially with the security parameter k, and this model allows the adversary to apply quantum
circuits of depth d containing 2-qubit gates combined with unbounded LOCC operations. (Honest
parties are still restricted to polynomial-time LOCC.) This model may be a more accurate description
of real solid-state qubits, where one can perform noisy entangling gates, but the accumulation of noise
makes it difficult to entangle large numbers of qubits at once.

It is an interesting open problem to construct OTM’s that are secure in this model. We show that
our reduction from almost-perfect single-bit OTM’s to leaky string-OTM’s still works in this setting.
More precisely, for any depth d ≤ poly(k), we show a variant of our reduction, whose efficiency is
polynomial in d, that remains secure in this depth-d model. The proof uses the same ideas as before.

Unfortunately, the leaky string-OTM’s from [5] are not known to be secure in this setting.
Nonetheless we believe it should be possible to construct leaky string-OTM’s in this depth-d model,
for at least some super-constant values of d, for the following intuitive reason: in order to break the
leaky string-OTM’s from [5], one has to break a particular version of Wiesner’s conjugate coding
scheme [16], and this requires running a classical decoding algorithm on a quantum superposition
of inputs, which requires applying a quantum circuit with a certain minimum number of entangling
gates.
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1.3 Discussion

Related work: This paper builds on recent work on non-interactive one-time memories in the
isolated qubits model [5, 6]. Some similar ideas have been investigated in connection with other
cryptographic tasks, such as bit commitment, quantum money and password-based identification
[17, 18, 19]. There is also a related line of work on LOCC state discrimination, involving “nonlocality
without entanglement” and data-hiding states [20, 21, 22, 23].

Our result on deterministic privacy amplification can be compared to earlier work on determin-
istic extractors for special classes of random sources, as well as exposure-resilient cryptography and
leakage-resilient cryptography [24, 25, 26, 27, 28]. However, these earlier works considered classical
adversaries, with various kinds of restrictions; our result, with a quantum adversary restricted to
(unbounded) LOCC operations, seems to be new.

Open problems: The overall goal of this work is to construct one-time programs whose security
is based on properties of realistic physical devices. One-time memories and the isolated qubits model
are useful steps along the way to achieving this goal, but there remain several open problems. First,
can one prove that these one-time memories satisfy a sufficiently strong notion of security, so that
they can be composed to build one-time programs? Second, can one modify the isolated qubits
model so that it matches more closely the properties of real solid-state qubits, e.g., by allowing a
limited number of entangling operations? Our results on privacy amplification are one step towards
answering these questions.

2 Preliminaries

2.1 Notation, ε-nets

For any two matrices A and B, we write A � B if and only if B −A is positive semidefinite. We let
‖A‖ denote the operator norm, ‖A‖tr denote the trace norm, and ‖A‖F denote the Frobenius norm.

We write Pr[E ] to denote the probability of an event E . We write E[X ] to denote the expectation
value of a random variable X . In some cases we write PrX [·] or EX [·] to emphasize that we are
considering probabilities associated with a random variableX . We write PX|Y to denote a probability
density function PX|Y (x|y) = Pr[X = x |Y = y]. In some cases we abuse this notation, e.g., if E is
an event, we write PEX|Y (x|y) = Pr[E , X = x |Y = y].

Suppose E is a subset of some normed space, with norm ‖·‖. Let ε > 0. We say that Ẽ is an
ε-net for E if Ẽ ⊂ E, and for every x ∈ E, there exists some y ∈ Ẽ such that ‖x− y‖ ≤ ε.

2.2 Quantum measurements

A quantum state is described by a density matrix ρ ∈ Cd×d with ρ � 0 and tr(ρ) = 1. A quantum

measurement can be described by a completely-positive trace-preserving map E : ρ 7→
∑

i KiρK
†
i ,

where the Ki are the Kraus operators and
∑

iK
†
iKi = I. Given a state ρ, the measurement re-

turns outcome i with probability tr(KiρK
†
i ), in which case the post-measurement state is given by

KiρK
†
i / tr(KiρK

†
i ).

A measurement outcome can also be described by a POVM element,3 that is, a matrix M ∈ Cd×d

with 0 � M � I. Given a state ρ, the probability of observingM is given by tr(Mρ). (In the example

in the previous paragraph, the outcome i is described by the POVM element K†
iKi.)

2.3 LOCC and separable measurements

In the isolated qubits model, qubits are only accessible via local operations and classical communica-
tion (LOCC), that is, one can perform single-qubit quantum operations, and use classical information
(obtained by measuring one qubit) to choose what operation to perform on another qubit. LOCC

3POVM refers to positive operator-valued measure, though we will not need to use this concept here.
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strategies can thus be represented by decision trees, where each vertex corresponds to a single-qubit
operation, and each edge corresponds to a possible (classical) outcome of that operation [5, 6].

A measurement on m qubits is called separable if it can be written in the form E : ρ 7→ ∑
i KiρK

†
i ,

where each operatorKi is a tensor product of m single-qubit operators, Ki = Ki,1⊗Ki,2⊗· · ·⊗Ki,m.
It is easy to see that any LOCC measurement is separable [30].

2.4 Smoothed min-entropy

We recall the definition of the smoothed conditional min-entropy:

Hε
∞(X |Y ) = max

E: Pr(E)≥1−ε
min
x,y

[
− lg

[
PEX|Y (x|y)

]]
, (2)

where the maximization is over all events E (defined by the conditional probabilities PE|XY ) such
that Pr(E) ≥ 1− ε. Note that a lower-bound of the form Hε

∞(X |Y ) ≥ h implies that there exists an
event E with Pr(E) ≥ 1− ε such that, for all x and y, Pr[E , X = x|Y = y] ≤ 2−h.

We will need the following “entropy splitting lemma,” which appeared in [29]. Intuitively, this
says that if X0 and X1 together have min-entropy at least α, then at least one of them (indicated
by the random variable C) must have min-entropy at least α/2.

Proposition 2.1. Let ε ≥ 0, and let X0, X1 and Z be random variables (which may be over different
alphabets) such that Hε

∞(X0, X1 |Z) ≥ α. Then there exists a random variable C taking values in
{0, 1} such that

Hε+ε′

∞ (X1−C |Z,C) ≥ 1
2α− 1− lg( 1

ε′ ) (for any ε′ > 0). (3)

2.5 Leaky string-OTM’s

The main result from [5] was a construction of a leaky string-OTM (which stores two strings, and
leaks at most a constant fraction of the information) in the isolated qubits model. Here we state
this result using slightly different language — in particular, we state the result in terms of “δ-non-
negligible” measurement outcomes, whereas in [5] this terminology was used in the proof but not in
the statement of the theorem.

For any quantum state ρ ∈ Cd×d, and any δ > 0, we say that a measurement outcome (POVM
element) M ∈ Cd×d is δ-non-negligible if tr(Mρ) ≥ δ tr(M)/d. Intuitively, these are the only
measurement outcomes we need to consider in our security proof, as the total probability contributed
by all the other “δ-negligible” measurement outcomes is never more than δ. To see this, consider any
measurement, which can be described by a collection of POVM elements {Mz | z = 1, 2, . . .} such
that

∑
z Mz = I. Then the total probability of observing a “δ-negligible” measurement outcome is

at most δ:

Pr[outcome z is “δ-negligible”] =
∑

z “negl.”

tr(Mzρ) <
∑

z “negl.”

δ tr(Mz)/d ≤ δ. (4)

We now restate the main result from [5]:

Theorem 2.2. For any k ≥ 2, and for any small constant 0 < µ ≪ 1, there exists an OTM con-
struction that stores two messages s, t ∈ {0, 1}ℓ, where ℓ = Θ(k2), and has the following properties:

1. Correctness and efficiency: there are honest strategies for programming the OTM with messages
s and t, and for reading either s or t, using only LOCC operations, and time polynomial in k.

2. Let δ0 > 0 be any constant, and set δ = 2−δ0k. Suppose the messages s and t are chosen
independently and uniformly at random in {0, 1}ℓ. For any separable4 measurement outcome
M that is δ-non-negligible, we have the following security bound:

Hε
∞(S, T |M) ≥ (1

2
− µ) ℓ− δ0k. (5)

4Note that this includes LOCC measurement outcomes as a special case.
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Here S and T are the random variables describing the two messages, we are conditioning on
the event that the adversary observes measurement outcome M , and we have ε ≤ exp(−Ω(k)).

2.6 t-wise independent hash functions

Let H be a collection of functions h that map {1, . . . , N} to {1, . . . ,M}. Let t ≥ 1 be an integer.
Let H be a function chosen uniformly at random from H; then this defines a collection of random
variables {H(x) | x = 1, . . . , N}. We say thatH is t-wise independent if for all subsets S ⊂ {1, . . . , N}
of size |S| ≤ t, the random variables {H(x) |x ∈ S} are independent and uniformly distributed in
{1, . . . ,M}.

We will use the fact that there exist efficient constructions for t-wise independent hash functions,
which run in time polynomial in t, logN and logM ; see [13] for details.

Proposition 2.3. For all integers n ≥ 1, m ≥ 1 and t ≥ 1, there exist families of t-wise inde-
pendent functions H = {h : {0, 1}n → {0, 1}m}, such that sampling a random function in H takes
t ·max {n,m} random bits, and evaluating a function in H takes time poly(n,m, t).

We will use the following large-deviation bound for sums of t-wise independent random variables.
This is a slight variant of results in [14] (see also [15]); we sketch the proof in Appendix A.

Proposition 2.4. Let t ≥ 2 be an even integer, and let H be a family of t-wise independent functions
that map {1, . . . , N} to {0, 1}. Fix some constants a1, . . . , aN ∈ R. Let H be a function chosen
uniformly at random from H, and define the random variable

Y =

N∑

x=1

(−1)H(x)ax. (6)

Then EY = 0, and we have the following large-deviation bound: for any λ > 0,

Pr(|Y | ≥ λ) ≤ 2e1/(6t)
√
πt

(
vt

eλ2

)t/2

, (7)

where v =
∑N

x=1 a
2
x.

3 Privacy amplification for one-time memories using isolated

qubits

Our main result is a reduction from “ideal” one-time memories to “leaky” one-time memories, in
the isolated qubits model. More precisely, we assume the existence of a “leaky” one-time memory D
that stores two strings s, t ∈ {0, 1}ℓ, and leaks any constant fraction of the bits of (s, t). (Such leaky
OTM’s were constructed previously in [5].) We then construct an “ideal” one-time memory D′ that
stores two bits a, b ∈ {0, 1}, and leaks an exponentially small amount of information about either a
or b (so that at least one of the bits (a, b) remains almost completely hidden).

Our construction makes use of two functions F,G : {0, 1}ℓ → {0, 1}, which are chosen from
an r-wise independent random ensemble. (We will specify the value of r later, in the statement of
Theorem 3.1.) Once the functions F and G have been chosen, they are fixed permanently, and they
become part of the public description of the one-time memory D′. (In particular, the adversary may
attack D′ using LOCC strategies that depend on F and G. We show that with high probability over
the choice of F and G, D′ is secure against all such attacks.)

We define the “ideal” one-time memory D′ to have the following behavior. First, one can program
D′ with two messages a, b ∈ {0, 1}. D′ then performs the following actions:

1. Choose s ∈ F−1(a) and t ∈ G−1(b) uniformly at random. (This can be done using rejection

sampling: choose s, t ∈ {0, 1}ℓ uniformly at random, and repeat until one gets s and t that
satisfy F (s) = a and G(t) = b.)
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2. Program a “leaky” one-time memory D with the messages s and t, and return D.

Given the device D′, an honest user can retrieve either a or b as follows:

1. Read either s or t from the device D.

2. Compute either a = F (s) or b = G(t), as appropriate.

We now prove the correctness and security of these “ideal” one-time memories D′. Note that
there is a subtle point with defining security for an “ideal” OTM: while the OTM should hide at least
one of the messages (a, b), which one remains hidden may depend on the adversary’s actions in a
complicated way. Our definition of security asserts that, conditioned on the adversary’s measurement
outcome, there exists a random variable C that indicates which message remains hidden; this follows
naturally from our use of the entropy splitting lemma (Prop. 2.1). Formally, we define:

σc(a, b) =

{
a if c = 0,

b if c = 1,
(8)

and we assert that the random variable σC(A,B) looks almost uniform, conditioned on the value of
C and the adversary’s measurement outcome.

Theorem 3.1. Fix some constants k0 ≥ 1, θ ≥ 1, δ0 > 0, α > 0 and ε0 > 0.

Suppose we have a family of devices D = {Dk | k ≥ k0}, indexed by a security parameter k ≥ k0.
Suppose these devices Dk are “leaky” string-OTM’s in the isolated qubits model, in the following
sense: for all k ≥ k0,

1. The device Dk stores two messages s, t ∈ {0, 1}ℓ, where ℓ ≥ k.

2. The device Dk uses m qubits, where k ≤ m ≤ kθ.

3. Correctness and efficiency: Given two messages s and t, the device Dk can be programmed using
only LOCC operations, in polynomial time (with respect to k). Given Dk, an honest party can
retrieve either s or t with high probability, using only LOCC measurements, in polynomial time
(with respect to k).

4. “Leaky” security: Suppose the device Dk is programmed with two messages (s, t) chosen uni-
formly at random. Let M be any separable measurement outcome that can result from mea-
suring the qubits in Dk, and suppose that M is δ-non-negligible, where δ = 2−δ0k. Then the
distribution of (s, t), conditioned on observing M , satisfies:

Hε
∞(S, T |M) ≥ αk, (9)

where ε ≤ 2−ε0k.

Now let D′ = {D′
k | k ≥ k0} be the family of devices constructed above, using r-wise independent

random functions F and G, with
r = 2(γ + 1)k2θ. (10)

(This choice of r is motivated by the union bound, see equation (22) in the proof. Here we choose γ
to be a sufficiently large constant, see equation (19) in the proof.)

Then these devices D′
k are “ideal” OTM’s in the isolated qubits model, in the following sense: for

all k ≥ k0, with probability ≥ 1 − e−Ω(k2θ) (over the choice of F and G), the following conditions
hold:

1. The device D′
k stores two messages a, b ∈ {0, 1}.

2. The device D′
k uses m qubits, where k ≤ m ≤ kθ.

7



3. Correctness and efficiency: Given two messages a and b, the device D′
k can be programmed using

only LOCC operations, in polynomial time (with respect to k). Given D′
k, an honest party can

retrieve either a or b with high probability, using only LOCC measurements, in polynomial time
(with respect to k).

4. “Ideal” security: Suppose the device D′
k is programmed with two messages (a, b) chosen uni-

formly at random. Let M be any separable measurement outcome that can result from measuring
the qubits in D′

k, and suppose that M is 2δ-non-negligible, where δ = 2−δ0k. Then there exists
a random variable C, which takes values in {0, 1}, such that:

Hε+η+δ
∞ (σC(A,B)|C,M) ≥ 1− 2−Ω(k), (11)

where ε ≤ 2−ε0k and η = 2−(α/8)k.

By taking the leaky string-OTM’s constructed in [5] (see Theorem 2.2), and applying the above
reduction, we obtain ideal OTM’s in the isolated qubits model:

Corollary 3.2. There exist ideal OTM’s in the isolated qubits model.

3.1 Proof of Theorem 3.1

It is easy to see that the devices D′
k behave correctly. To prove security, we will use a covering

argument. First, we will show that for any (fixed) separable measurement outcome M , with high
probability (over the choice of the random functions F and G used to construct D′

k), equation (11) is

satisfied. Next, we will construct an ε-net W̃ for the set of all separable measurement outcomes, and
show that with high probability (over F and G), for all measurement outcomes M̃ ∈ W̃ , equation
(11) is satisfied simultaneously. Finally, we will show that any separable measurement outcome M

can be approximated by a measurement outcome M̃ ∈ W̃ , such that equation (11) for M̃ implies a
similar bound for M .

We set the parameters in the following way: the last part of the argument (approximating M by

M̃ ∈ W̃ ) determines how small we must choose ε when constructing the ε-net W̃ ; this determines

the cardinality of W̃ , which affects the union bound; this determines how large we must choose r
when choosing the r-wise independent random functions F and G.

We now show the details. We begin with the following lemma, which describes what happens
when we fix a particular measurement outcome M . We assume that M is separable and δ-non-
negligible; then the security guarantee for the leaky string-OTM (equation (9)) implies that:

Hε
∞(S, T |M) ≥ αk. (12)

The lemma introduces a random variable C that indicates which of the two messages A and B
remains unknown to the adversary; call this message σC(A,B). In addition, the lemma introduces
an event E that “smooths” the distribution, by excluding some low-probability failure events. We
then define a quantity Qc(M) that measures the bias of the message σC(A,B), smoothed by E and
conditioned on C = c and on the measurement outcome M . The lemma shows that, with high
probability (over F and G), Qc(M) is small.

Lemma 3.3. Fix some measurement outcome M such that Hε
∞(S, T |M) ≥ αk. Define η = 2−η0k

where η0 = α/8. Then there exists a random variable C, taking values in {0, 1}, and there exists an
event E, occurring with probability Pr(E|M) ≥ 1−ε−η, such that the following statement holds: Say
we define, for all c ∈ {0, 1},

Qc(M) = Pr(E , σC(A,B) = 0 |C = c, M)

− Pr(E , σC(A,B) = 1 |C = c, M),
(13)

which is a random variable depending on F and G. Then for all c ∈ {0, 1}, and all λ > 0,

Pr
FG

(|Qc(M)| ≥ λ) ≤ 2e1/(6r)
√
πr

(
2−(α/3)kr

eλ2

)r/2

. (14)
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We will prove this lemma in Section 3.2. As a consequence of this lemma, we can lower-bound
the smoothed min-entropy of the message σC(A,B). Specifically, when |Qc(M)| ≤ λ, it follows that

Pr(E , σC(A,B) = a |C = c, M) ≤ 1
2 + 1

2λ (for all a ∈ {0, 1}), (15)

and therefore,

Hε+η
∞ (σC(A,B) |C = c, M) ≥ − lg(12 + 1

2λ)

= 1− lg(1 + λ)

≥ 1− λ.

(16)

This shows that the device D′
k is secure, in the case where the adversary happens to observe this

particular measurement outcome M .
Next, we let W denote the set of all separable measurement outcomes, and we construct an ε-net

W̃ for W . Specifically, we define W as follows:

W = {M ∈ (C2×2)⊗m | M =

m⊗

i=1

Mi, 0 � Mi � I}. (17)

Lemma 3.4. For any 0 < µ ≤ 1, there exists a set W̃ ⊂ W , of cardinality |W̃ | ≤ (9mµ )4m, which is

a µ-net for W with respect to the operator norm ‖·‖.
We will prove this lemma in Section 3.2. Now, we will use the union bound to show that, with

high probability, for all M̃ ∈ W̃ , Qc(M̃) is small simultaneously. First, we use Lemma 3.4, and we
set

µ = 2−(α/6)k · δ4

4m
(18)

(this choice is motivated by equation (27) below — we choose µ small enough that the µ-net gives
a good approximation of any measurement outcome). Also, recall that k ≤ m ≤ kθ. Then the

cardinality of W̃ is bounded by

|W̃ | ≤
(
9m · 2(α/6)k · 4

m

δ4

)4m

= (9m · 2(α/6)k+4δ0k+2m)4m

≤ 2γk
2θ

,

(19)

for a suitable constant γ, and all sufficiently large k. Next, we use Lemma 3.3, and we set

λ = 2−(α/6)k√r; (20)

then we have that
Pr
FG

(|Qc(M)| ≥ λ) ≤ 2e1/(6r)
√
πre−r/2. (21)

Finally, we use the union bound, and we set r sufficiently large (see equation (10)); then we have
that

Pr
FG

(
∃M̃ ∈ W̃ , ∃c ∈ {0, 1}, s.t. M̃ is δ-non-negligible, |Qc(M̃)| ≥ λ

)

≤ 2 · 2γk2θ · 2e1/(6r)
√
πre−r/2

≤ e−Ω(k2θ).

(22)

Also, note that λ ≤ 2−Ω(k). Hence, with high probability (over F and G), we have that:

∀M̃ ∈ W̃ , ∀c ∈ {0, 1}, (M̃ is δ-non-negligible) ⇒ |Qc(M̃)| ≤ λ. (23)
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Via equation (16), this implies that the device D′
k is secure in the case where the adversary observes

any of the measurement outcomes in the set W̃ .
Next, we state two lemmas that describe how an arbitrary measurement outcome M can be

approximated by another measurement outcome M̃ . Roughly speaking, the first lemma shows that
if M is 2δ-non-negligible, then M̃ is δ-non-negligible.

Lemma 3.5. Suppose that M, M̃ ∈ (C2×2)⊗m, and 0 � M � I, and 0 � M̃ � I. Suppose that M is

2δ-non-negligible, where 0 < δ ≤ 1
2 , and tr(M) ≥ 1. Suppose that M̃ satisfies ‖M − M̃‖ ≤ µ, where

µ ≤ 2
3δ · 2−m. Then M̃ is δ-non-negligible.

The second lemma shows that, if the quantity Qc(M̃) is defined (in terms of a random variable

C̃ and an event Ẽ , as in Lemma 3.3), then we can also define the quantity Qc(M) (choosing C and

E in an appropriate way), so that Qc(M) ≈ Qc(M̃).

Lemma 3.6. Suppose that M, M̃ ∈ (C2×2)⊗m, and 0 � M � I, and 0 � M̃ � I. Suppose that M is

2δ-non-negligible, where 0 < δ ≤ 1
2 , and ‖M‖ = 1. Suppose that M̃ satisfies ‖M − M̃‖ ≤ µ, where

µ ≤ 1
2 , and M̃ is δ-non-negligible.

Suppose there exists a random variable C̃, taking values in {0, 1}, and there exists an event Ẽ,
occurring with probability Pr(Ẽ |M̃); and suppose we define

Qc(M̃) = Pr(Ẽ , σC̃(A,B) = 0 | C̃ = c, M̃)

− Pr(Ẽ , σC̃(A,B) = 1 | C̃ = c, M̃), for all c ∈ {0, 1}.
(24)

Let 0 < τ ≤ 1
2 . Then there exists a random variable C, taking values in {0, 1}, and there exists

an event E, occurring with probability Pr(E|M) ≥ Pr(Ẽ |M̃) − τ , such that the following statement
holds: Say we define

Qc(M) = Pr(E , σC(A,B) = 0 |C = c, M)

− Pr(E , σC(A,B) = 1 |C = c, M), for all c ∈ {0, 1}. (25)

Then for every c ∈ {0, 1}, either Qc(M) = 0, or we have:

|Qc(M)−Qc(M̃)| ≤ 2µ

(
2m

τδ

)2

. (26)

We will prove these two lemmas in Section 3.3. Using these lemmas, we now show that the device
D′

k is secure, when the adversary observes any separable measurement outcome M ∈ W that is
2δ-non-negligible.

Without loss of generality, suppose that ‖M‖ = 1. (Without loss of generality, we can assume
M 6= 0. Note that we can multiply M by a scalar factor, as long as 0 � M � I, without changing
the distributions of the other variables conditioned on M .) Note that this implies tr(M) ≥ 1.

Let M̃ ∈ W̃ be the nearest point in the µ-net W̃ ; so we have ‖M − M̃‖ ≤ µ, where µ is set

according to equation (18). By Lemma 3.5, M̃ is δ-non-negligible. By equation (23), |Qc(M̃)| ≤ λ ≤
2−Ω(k), for all c ∈ {0, 1}.

Using Lemma 3.6, and setting τ = δ, we get that for every c ∈ {0, 1}, either Qc(M) = 0, or:

|Qc(M)−Qc(M̃)| ≤ 2µ · 4
m

δ4
= 2 · 2−(α/6)k. (27)

So we have |Qc(M)| ≤ 2−Ω(k), for all c ∈ {0, 1}. Using the argument from equation (16), we get:

Hε+η+δ
∞ (σC(A,B) |C = c, M) ≥ 1− 2−Ω(k). (28)

Thus the device D′
k is secure. This completes the proof of Theorem 3.1. �
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3.2 Proofs of lemmas 3.3 and 3.4

We now prove Lemma 3.3. We are given that Hε
∞(S, T |M) ≥ αk. For all c ∈ {0, 1}, we define:

σc(s, t) =

{
s if c = 0,

t if c = 1.
(29)

Using entropy splitting (Prop. 2.1), and setting η = 2−η0k and η0 = α/8, we get that there exists a
random variable C, taking values in {0, 1}, such that:

Hε+η
∞ (σC(S, T ) |C,M) ≥ (α/2)k − 1− η0k ≥ (α/3)k. (30)

Using the definition of the smoothed conditional min-entropy, we get that there exists an event
E , occurring with probability Pr(E |M) ≥ 1− ε− η, such that for all c ∈ {0, 1}, and all s ∈ {0, 1}ℓ,
Pr(E , σc(S, T ) = s |C = c,M) ≤ 2−(α/3)k. In particular, this implies that

∑

s∈{0,1}ℓ

Pr(E , σc(S, T ) = s |C = c,M)2 ≤ 2−(α/3)k. (31)

We now proceed to bound the quantity Qc(M). We consider the case where c = 0 (the c = 1
case is similar). In this case, we can write

Q0(M) =
∑

s∈{0,1}ℓ

(−1)F (s) Pr(E , S = s |C = 0,M). (32)

Since F is an r-wise independent random function, we can apply the large deviation bound in Prop.
2.4 (making use of equation (31)). This proves Lemma 3.3. �

We now prove Lemma 3.4. First, consider the set

V = {X ∈ C
2×2 | ‖X‖ℓ∞ ≤

√
2, X† = X}, (33)

where ‖·‖ℓ∞ denotes the ℓ∞ norm, viewing each 2 × 2 matrix as a 4-dimensional vector. Let δ > 0

(we will choose a specific value for δ later). It is easy to see that there exists a δ-net Ṽ for V , with

respect to the ℓ∞ norm, with cardinality |Ṽ | ≤ (2δ + 1)4. (For instance, one can describe each point

in V using 4 real parameters, and choose a grid with spacing δ
√
2.)

Next, consider the set of single-qubit POVM elements:

U = {X ∈ C
2×2 | 0 � X � I}. (34)

Note that U ⊂ V , since ‖X‖ℓ∞ ≤ ‖X‖F ≤
√
2‖X‖. We will construct a 4δ-net Ũ for U , by

“rounding” each point in Ṽ into U . Define a function r : V → U that maps each point in V to the
nearest point in U with respect to the ℓ∞ norm, that is,

r(X) = arg min
Y ∈U

‖X − Y ‖ℓ∞ . (35)

Let Ũ be the image of Ṽ under this map, that is, Ũ = {r(X) | X ∈ Ṽ }. Note that |Ũ | ≤ |Ṽ |.
It is easy to see that Ũ is a 2δ-net for U , with respect to the ℓ∞ norm. (This follows because, for

any X ∈ U , there exists some Y ∈ Ṽ such that ‖X − Y ‖ℓ∞ ≤ δ, and we know that r(Y ) ∈ Ũ and

‖Y − r(Y )‖ℓ∞ ≤ δ.) This implies that Ũ is a 4δ-net for U , with respect to the operator norm ‖·‖.
(This follows because ‖X‖ ≤ ‖X‖F ≤ 2‖X‖ℓ∞ .)

We are now ready to consider the set W . We can write W in the form

W = {M | M =

m⊗

i=1

Mi, Mi ∈ U}. (36)
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We then define W̃ = {M | M =
⊗m

i=1 Mi, Mi ∈ Ũ}. Note that W̃ has cardinality |W̃ | ≤ |Ũ |m.

We claim that W̃ is a 4mδ-net for W , with respect to the operator norm ‖·‖. To see this, consider

any M ∈ W , and construct some M̃ ∈ W̃ that approximates it, as follows. M can be written in the
form M =

⊗m
i=1 Mi. For each Mi, there is a point M̃i ∈ Ũ within distance ‖Mi − M̃i‖ ≤ 4δ. We

then let M̃ =
⊗m

i=1 M̃i.

We upper-bound the distance ‖M − M̃‖ as follows, by defining a sequence of intermediate steps,

and using the triangle inequality. For all s = 0, 1, 2, . . . ,m, define M (s) = (M̃1⊗· · ·⊗M̃s)⊗ (Ms+1⊗
· · · ⊗Mm). Then we have that M = M (0), M̃ = M (m), and

‖M − M̃‖ ≤
m−1∑

s=0

‖M (s) −M (s+1)‖

=
m−1∑

s=0

∥∥(M̃1 ⊗ · · · ⊗ M̃s)⊗ (Ms+1 − M̃s+1)⊗ (Ms+2 ⊗ · · · ⊗Mm)
∥∥

≤ 4mδ,

(37)

where we used the fact that ‖A⊗B‖ = ‖A‖ ‖B‖.
Finally, we set δ = µ/(4m). Then W̃ is a µ-net for W , with respect to the operator norm ‖·‖.

The cardinality of W̃ is |W̃ | ≤ (2δ +1)4m = (8mµ +1)4m ≤ (9mµ )4m, provided that µ ≤ 1. This proves
Lemma 3.4. �

3.3 Proofs of lemmas 3.5 and 3.6

We now prove Lemma 3.5. Since M is 2δ-non-negligible (with respect to some quantum state ρ), we

have Pr(M) = tr(Mρ) ≥ 2δ · 2−m tr(M). Since ‖M − M̃‖ ≤ µ, and tr(M) ≥ 1, we can write

Pr(M̃) = tr(M̃ρ) ≥ tr(Mρ)− µ

≥ 2δ · 2−m tr(M)− µ

≥ δ · 2−m tr(M) + δ · 2−m − µ

≥ δ · 2−m tr(M̃)− δ · µ+ δ · 2−m − µ

= δ · 2−m tr(M̃) + δ · 2−m − (1 + δ)µ.

(38)

Since µ ≤ 2
3δ · 2−m, and δ ≤ 1

2 , we have (1+ δ)µ ≤ δ · 2−m. By plugging into the above equation, we

see that M̃ is δ-non-negligible. This proves Lemma 3.5. �

We now prove Lemma 3.6. We start by writing Qc(M̃) in a more explicit form. By assumption,

there is a random variable C̃, which is defined by the probabilities Pr(C̃ = c | S = s, T = t, M̃);

and there is an event Ẽ , which is defined by the probabilities Pr(Ẽ | C̃ = c, S = s, T = t, M̃). Also,
let ρst be the quantum state used to encode messages (s, t), i.e., this is the state of the one-time
memory, conditioned on S = s and T = t. Then we can write

Qc(M̃) =
1

Pr(C̃ = c, M̃)

(
Pr(Ẽ , σC̃(A,B) = 0, C̃ = c, M̃)

− Pr(Ẽ , σC̃(A,B) = 1, C̃ = c, M̃)

)
.

(39)

Now consider the case where c = 0, and note that σ0(A,B) = A = F (S). We can write Q0(M̃)
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in the form

Q0(M̃) =
1

Pr(C̃ = 0, M̃)

∑

s,t∈{0,1}ℓ

(−1)F (s) Pr(Ẽ , S = s, T = t, C̃ = c, M̃)

=
1

Pr(C̃ = 0, M̃)
tr(M̃ν0),

(40)

where we define the matrix ν0 ∈ (C2×2)⊗m as follows:

ν0 = 4−ℓ
∑

s,t∈{0,1}ℓ

(−1)F (s) Pr(Ẽ | C̃ = 0, S = s, T = t, M̃)

Pr(C̃ = 0 | S = s, T = t, M̃) ρst.

(41)

Also, note that ‖ν0‖tr ≤ 1.

In addition, we can write Pr(C̃ = 0, M̃) in the form

Pr(C̃ = 0, M̃) = tr(M̃ξ0), (42)

where we define the matrix ξ0 ∈ (C2×2)⊗m as follows:

ξ0 = 4−ℓ
∑

s,t∈{0,1}ℓ

Pr(C̃ = 0 | S = s, T = t, M̃) ρst. (43)

Also, note that ‖ξ0‖tr ≤ 1.

The case where c = 1 can be handled in a similar way: we can write Q1(M̃) in terms of matrices
ν1 and ξ1. To summarize, we have:

Qc(M̃) =
tr(M̃νc)

tr(M̃ξc)
. (44)

We now consider the measurement outcome M . We will construct a random variable C and an
event E , which will allow us to define the quantity Qc(M). Roughly speaking, C and E (conditioned

on M) will behave similarly to C̃ and Ẽ (conditioned on M̃). However, if there exists some c ∈ {0, 1}
for which the probability Pr(C = c |M) is unusually small, then we will define E to exclude this
event, in order to avoid situations where Qc(M) “blows up” because the denominator is very small.

Formally, we construct the random variable C and the event E by specifying the following prob-
abilities (for all c ∈ {0, 1} and s, t ∈ {0, 1}ℓ):

Pr(C = c |S = s, T = t, M) = Pr(C̃ = c |S = s, T = t, M̃), (45)

Pr(E |C = c, S = s, T = t, M) =

{
0 if Pr(C = c |M) < τ,

Pr(Ẽ | C̃ = c, S = s, T = t, M̃) otherwise.
(46)

We now show that Pr(E |M) ≥ Pr(Ẽ | M̃) − τ . Let us say that c ∈ {0, 1} is “bad” if Pr(C =
c |M) < τ . There are two possible values, 0 and 1, and at most one of them can be bad. If neither

one is bad, then Pr(E |M) = Pr(Ẽ | M̃). If one particular value (say 0) is bad, then we have:

Pr(E |M) ≥ Pr(E |C = 1, M) Pr(C = 1 |M)

= Pr(Ẽ | C̃ = 1, M̃) Pr(C̃ = 1 | M̃)

= Pr(Ẽ | M̃)− Pr(Ẽ | C̃ = 0, M̃) Pr(C̃ = 0 | M̃)

> Pr(Ẽ | M̃)− τ.

(47)

We now define Qc(M) as follows:

Qc(M) = Pr(E , σC(A,B) = 0 |C = c, M)

− Pr(E , σC(A,B) = 1 |C = c, M), for all c ∈ {0, 1}. (48)
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Note that, if c is bad, then Qc(M) = 0, by construction.

We will show that, if c is not bad, then Qc(M) ≈ Qc(M̃). When c is not bad, we can write
Qc(M) in the form

Qc(M) =
tr(Mνc)

tr(Mξc)
, (49)

where νc and ξc are the same matrices used to express Qc(M̃) in equation (44). In addition, we can

lower-bound tr(Mξc) and tr(M̃ξc) as follows:

tr(Mξc) = Pr(C = c, M) ≥ τ Pr(M) (50)

≥ τ · 2δ · 2−m tr(M) ≥ τ · 2δ · 2−m‖M‖ (51)

≥ τ · 2δ · 2−m, (52)

tr(M̃ξc) = Pr(C̃ = c, M̃) ≥ τ Pr(M̃) (53)

≥ τδ · 2−m tr(M̃) ≥ τδ · 2−m‖M̃‖ (54)

≥ τδ · 2−m(1− µ) ≥ τδ · 2−m · 1
2 . (55)

Now we can write Qc(M)−Qc(M̃) as follows:

Qc(M)−Qc(M̃) =
tr((M − M̃)νc)

tr(Mξc)
+ tr(M̃νc)

tr((M̃ −M)ξc)

tr(Mξc) tr(M̃ξc)
. (56)

We can then upper-bound this quantity:

|Qc(M)−Qc(M̃)| ≤ µ

τ · 2δ · 2−m
+ (1 + µ)

µ

τ · 2δ · 2−m · τδ · 2−m · 1
2

=
µ

τ · 2δ · 2−m

(
1 +

(1 + µ)

τδ · 2−m · 1
2

)

≤ 2µ

(
2m

τδ

)2

.

(57)

This completes the proof of Lemma 3.6. �

4 Beyond the isolated qubits model

We now describe a class of adversaries who can perform a polynomial number of 2-qubit entangling
operations, in addition to unbounded LOCC. In particular, we will choose some “depth” parameter d
(which may grow polynomially with the security parameter k), and we will consider adversaries who
can apply quantum circuits whose depth is bounded by d. These kinds of attacks may be feasible
in real physical systems, where one can perform noisy entangling gates. Intuitively, one may expect
that the noise will accumulate when one applies a long sequence of entangling gates; so it is easier
to apply shallow (low-depth) quantum circuits.

We will then show that our privacy amplification result for one-time memories (Theorem 3.1)
still holds against these depth-d adversaries, where d can grow polynomially in k, and the privacy
amplification technique now runs in time polynomial in d.

First, we will need a few definitions. Let E : ρ 7→
∑

iKiρK
†
i be a generalized quantum measure-

ment. We say that E is 2-local if every Kraus operator Ki can be written as a tensor product of
2-qubit operators (where different Kraus operators Ki may arrange the qubits into pairs in different
ways). As a simple example, if E1, E2, . . . , Eℓ are 2-qubit quantum measurements, then E1⊗E2⊗· · ·⊗Eℓ
is a 2-local quantum measurement on 2ℓ qubits.

Note that 2-local measurements can be viewed as a generalization of separable measurements,
in the following sense. First, if E is separable, then E is 2-local. Also, if E1 and E2 are separable,
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and F is 2-local, then E2 ◦ F ◦ E1 is 2-local. Thus any 2-local measurement can include a separable
measurement (and in particular, an LOCC measurement) “for free.”

We say that an adversary is 2-local with depth d if it performs a measurement of the form
E = Ed ◦ Ed−1 ◦ · · · ◦ E1, where E1, E2, . . . , Ed are 2-local measurements. That is, the adversary
first performs the measurement E1, obtains a classical measurement outcome i1, then performs the
measurement E2, obtains a classical measurement outcome i2, and so on; after the final measurement
Ed, the post-measurement quantum state is discarded.

We say that the corresponding POVM element Mi1,i2,...,id is 2-local with depth d. We can write
it in the following form:

Mi1,i2,...,id = (K†
1,i1

K†
2,i2

· · ·K†
d,id

) (Kd,id · · ·K2,i2K1,i1), (58)

where the Ka,ia denote the Kraus operators of the measurement Ea, that is, Ea(ρ) =
∑

ia
Ka,iaρK

†
a,ia

,
and each Ka,ia can be written as a tensor product of 2-qubit operators.

We now extend our privacy amplification result for one-time memories (Theorem 3.1) to the case
of 2-local depth-d adversaries.

Theorem 4.1. Fix some constant ϕ ≥ 0.
Suppose that D is a family of “leaky” string-OTM’s, as described in Theorem 3.1, but with a

stronger security guarantee, which holds for all measurement outcomes that are 2-local with depth
d ≤ kϕ (rather than for all separable measurement outcomes).

Now construct a new family of devices D′, as described in Theorem 3.1, but where we set the
parameter r (for the r-wise independent random functions F and G) as follows:

r = 2(γ + 1)k2θ+ϕ. (59)

Then these devices D′ are “ideal” OTM’s, as described in Theorem 3.1, but again with a stronger
security guarantee, which holds for all measurement outcomes that are 2-local with depth d ≤ kϕ

(rather than for all separable measurement outcomes).

Thus, if one could construct leaky string-OTM’s that were secure against 2-local depth-d adver-
saries, then one would immediately get almost-perfect bit-OTM’s in this setting. Unfortunately, the
leaky string-OTM’s from [5] are not known to be secure in this setting, and we leave this as an open
problem.

4.1 Proof of Theorem 4.1

We follow the same approach used to prove Theorem 3.1. Most of the argument is unchanged; the
key difference is in Lemma 3.4, where we now want to construct an ε-net for the set of all 2-local
depth-d measurement outcomes (rather than the set of all separable measurement outcomes).

Let Λ be the set of all 2-local depth-d measurement outcomes:

Λ = {M ∈ (C2×2)⊗m | M = (K†
1 · · ·K†

d) (Kd · · ·K1), where K1, . . . ,Kd ∈ L}, (60)

where L is the set of all operators K ∈ (C2×2)⊗m that can be written as tensor products of 2-qubit
operators having operator norm at most 1. We will construct an ε-net for Λ, using the following
lemma:

Lemma 4.2. For any 0 < µ ≤ 1, there exists a set Λ̃ ⊂ Λ, of cardinality |Λ̃| ≤
(
24dm17/16

µ

)16md
,

which is a µ-net for Λ with respect to the operator norm ‖·‖.
We will prove this lemma in Section 4.2. Now, we set

µ = 2−(α/6)k · δ4

4m
(61)
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(the same as in the proof of Theorem 3.1). Also, recall that k ≤ m ≤ kθ, and d ≤ kϕ. Then the

cardinality of Λ̃ is bounded by

|Λ̃| ≤
(
24dm17/16 · 2(α/6)k · 4

m

δ4

)16md

=
(
24dm17/16 · 2(α/6)k+4δ0k+2m

)16md

≤ 2γk
2θ+ϕ

,

(62)

for a suitable constant γ, and all sufficiently large k. This bound plays the role of equation (19) in
the proof of Theorem 3.1.

One then continues with the same argument as in Theorem 3.1: one uses the union bound over
the set Λ̃, while setting the parameter r sufficiently large (see equation (59)). This gives a result
similar to equation (22).

The rest of the proof is the same as for Theorem 3.1. This completes the proof of Theorem 4.1.
�

4.2 Proof of lemma 4.2

We now prove Lemma 4.2. First, consider the set

V = {X ∈ C
4×4 | ‖X‖ℓ∞ ≤ 2}. (63)

Let δ > 0 (we will choose a specific value for δ later). It is easy to see that there exists a δ-net Ṽ for

V , with respect to the ℓ∞ norm, with cardinality |Ṽ | ≤ (2
√
2

δ +1)32. (For instance, one can describe

each point in V with 32 real parameters, and choose a grid with spacing δ
√
2.)

Next, consider the set of 2-qubit Kraus operators:

U = {X ∈ C
4×4 | ‖X‖ ≤ 1}. (64)

Note that U ⊂ V , since ‖X‖ℓ∞ ≤ ‖X‖F ≤ 2‖X‖. We will construct an 8δ-net Ũ for U , by taking

the points in Ṽ and “rounding” them into U . Define a function r : V → U that maps each point in
V to the nearest point in U with respect to the ℓ∞ norm, that is,

r(X) = arg min
Y ∈U

‖X − Y ‖ℓ∞ . (65)

Let Ũ be the image of Ṽ under this map, that is, Ũ = {r(X) | X ∈ Ṽ }. Note that |Ũ | ≤ |Ṽ |.
It is easy to see that Ũ is a 2δ-net for U , with respect to the ℓ∞ norm. (This follows because, for

any X ∈ U , there exists some Y ∈ Ṽ such that ‖X − Y ‖ℓ∞ ≤ δ, and we know that r(Y ) ∈ Ũ and

‖Y − r(Y )‖ℓ∞ ≤ δ.) This implies that Ũ is an 8δ-net for U , with respect to the operator norm ‖·‖.
(This follows because ‖X‖ ≤ ‖X‖F ≤ 4‖X‖ℓ∞ .)

Next, we let L be the set of all operators K ∈ (C2×2)⊗m that can be written as tensor products

of 2-qubit operators in U . We then define L̃ to be the set of all operators K ∈ (C2×2)⊗m that can be

written as tensor products of 2-qubit operators in Ũ . Note that L̃ has cardinality |L̃| ≤ m! |Ũ |m/2
,

since every operator K ∈ L̃ can be written in the form
⊗m/2

j=1 Kj (where Kj ∈ Ũ) conjugated with
a permutation of the qubits. (For simplicity, let us assume that m is even.)

We claim that L̃ is a 4mδ-net for L, with respect to the operator norm ‖·‖. To see this, consider

any K ∈ L, and construct some K̃ ∈ L̃ that approximates it as follows. First, relabel the qubits so

that K can be written in the form K =
⊗m/2

j=1 Kj (where Kj ∈ U). For each Kj , there is a point

K̃j ∈ Ũ within distance ‖Kj − K̃j‖ ≤ 8δ. We then define K̃ =
⊗m/2

j=1 K̃j.

16



We upper-bound the distance ‖K − K̃‖ as follows, by defining a sequence of intermediate steps,

and using the triangle inequality. For all s = 0, 1, 2, . . . ,m/2, define K(s) = (K̃1⊗· · ·⊗K̃s)⊗(Ks+1⊗
· · · ⊗Km/2). Then we have that K = K(0), K̃ = K(m/2), and

‖K − K̃‖ ≤
m/2−1∑

s=0

‖K(s) −K(s+1)‖

=

m/2−1∑

s=0

∥∥(K̃1 ⊗ · · · ⊗ K̃s)⊗ (Ks+1 − K̃s+1)⊗ (Ks+2 ⊗ · · · ⊗Km/2)
∥∥

≤ (m/2) 8δ = 4mδ,

(66)

where we used the fact that ‖A⊗B‖ = ‖A‖ ‖B‖.
Finally, we consider the set Λ of all 2-local depth-d measurement outcomes:

Λ = {M ∈ (C2×2)⊗m | M = (K†
1 · · ·K†

d) (Kd · · ·K1), where K1, . . . ,Kd ∈ L}. (67)

We then define the set Λ̃ as follows:

Λ̃ = {M ∈ (C2×2)⊗m | M = (K†
1 · · ·K†

d) (Kd · · ·K1), where K1, . . . ,Kd ∈ L̃}. (68)

Note that Λ̃ has cardinality |Λ̃| ≤ |L̃|d.
We claim that Λ̃ is an 8dmδ-net for Λ, with respect to the operator norm ‖·‖. To see this, consider

any M ∈ Λ, and construct some M̃ ∈ Λ̃ that approximates it as follows. M can be written in the
form M = (K†

1 · · ·K
†
d) (Kd · · ·K1) (where Kj ∈ L). For each Kj, there is a point K̃j ∈ L̃ within

distance ‖Kj − K̃j‖ ≤ 4mδ. We then let M̃ = (K̃†
1 · · · K̃†

d) (K̃d · · · K̃1).

We upper-bound the distance ‖M − M̃‖ as follows, by defining a sequence of intermediate steps,
and using the triangle inequality. For all s = 0, 1, 2, . . . , 2d, define M (s) to be an operator of the
form (K†

1 · · ·K†
d) (Kd · · ·K1), where the first s factors (reading from left to right) have tilde’s, and

the remaining 2d− s factors do not have tilde’s. Then we have that M = M (0), M̃ = M (2d), and

‖M − M̃‖ ≤
2d−1∑

s=0

‖M (s) −M (s+1)‖

=

d−1∑

s=0

∥∥(K̃†
1 · · · K̃†

s)(K
†
s+1 − K̃†

s+1)(K
†
s+2 · · ·K†

d) (Kd · · ·K1)
∥∥

+

2d−1∑

s=d

∥∥(K̃†
1 · · · K̃†

d) (K̃d · · · K̃2d−s+1)(K2d−s − K̃2d−s)(K2d−s−1 · · ·K1)
∥∥

≤ 2d · 4mδ = 8dmδ,

(69)

where we used the fact that ‖AB‖ ≤ ‖A‖ ‖B‖.
Finally, we set δ = µ/(8dm). Then Λ̃ is a µ-net for Λ, with respect to the operator norm ‖·‖.

The cardinality of Λ̃ is

|Λ̃| ≤ |L̃|d ≤ (m!)d |Ũ |md/2

≤ (m!)d
(
2
√
2

δ + 1
)16md

≤ mmd
(
16

√
2dm
µ + 1

)16md

≤
(
24dm17/16

µ

)16md
,

(70)

provided that µ ≤ 1. This proves Lemma 4.2. �
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A Proof of Proposition 2.4

We prove Proposition 2.4, a large-deviation bound for t-wise independent random variables. The
proof is essentially the same as in [14], with minor modifications because the random variables have
different distributions. First we use Markov’s inequality:

Pr(|Y | ≥ λ) ≤ 1

λt
E(|Y |t) = 1

λt
E(Y t). (71)

Now let Γ1, . . . ,ΓN be independent random variables uniformly distributed in {0, 1}, and define

Ỹ =
∑N

x=1(−1)Γxax (the same expression as Y , but replacing the random variables H(x) with Γx).
Since the H(x) are t-wise independent, we know that

E(Y t) = E(Ỹ t). (72)

(To see this, write Y =
∑N

x=1(1−2H(x))ax, which is a linear function of the random variables H(x);
hence Y t is a degree-t polynomial in the variables H(x).)

We can then bound E(Ỹ t) as follows (using Hoeffding’s inequality, letting y = x2/t/2v, and using
Stirling’s inequality):

E(Ỹ t) =

∫ ∞

0

Pr(Ỹ t > x)dx =

∫ ∞

0

Pr(|Ỹ | > x1/t)dx

≤
∫ ∞

0

2 exp(−x2/t/2v)dx

= 2

∫ ∞

0

e−y(2v)t/2(t/2)y(t/2)−1dy

= 2(2v)t/2 · (t/2)!
< 2(2v)t/2 · e1/(6t)

√
πt(t/2e)t/2

= 2e1/(6t)
√
πt(vt/e)t/2.

(73)

This proves Proposition 2.4. �
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