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Abstract

We explicitly construct random hash functions for privacy amplification (extractors) that require smaller random
seed lengths than the previous literature, and still allow efficient implementations with complexity O(n log n) for
input length n. The key idea is the concept of dual universal2 hash function introduced recently. We also use a new
method for constructing extractors by concatenating δ-almost dual universal2 hash functions with other extractors.

Besides minimizing seed lengths, we also introduce methods that allow one to use non-uniform random seeds
for extractors. These methods can be applied to a wide class of extractors, including dual universal2 hash function,
as well as to conventional universal2 hash functions. The technical details are in arXiv:1311.5322 (2013).
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Background: Even when a random source at hand is partially leaked to an eavesdropper, one can amplify its
secrecy by applying a random hash function. This process is called the privacy amplification. In this process, the
amplification of secrecy is realized with the help of another auxiliary random source, which is public and is called
a random seed. The random hash functions used for this purpose are often called extractors. There is also a similar
but distinct process called two-sources-extractors [9], where the auxiliary random source is not public. The most
typical random hash function for these purposes is the universal2 hash function [5], [45]. There are many security
theorems which assumes the use of the universal2 hash function. In particular, the leftover hashing lemma [4], [14]
has several extensions and various applications in the classical and quantum setting [30], [39], [17], [18], [24],
[16], [19], [20], [27].

The universal2 hash function has now become indispensable for privacy amplification of quantum key distribution
(QKD) [3], [30], [40], [23], [22]. The most widely used universal2 hash function for this purpose is the one that
uses the (modified) Toeplitz matrix, mainly because it can be implemented efficiently with complexity O(n log n)
for input length n (see, e.g., [32], [43]). Here we note that the usual notion of efficiency (i.e., the algorithm finishes
in polynomial time) is not sufficient, but a stricter criterion of the complexity being O(n log n) is desirable for
QKD. This is because, for typical QKD systems, the finite size effect requires the input length n to be n ≥ 106

[40], [23], [22] , and thus algorithms that are efficient in the usual sense, e.g., O(n2), are useless.
Another important criterion for practical hash functions is how much randomness is required for the random

seed. This can be measured in two way, i.e., by the required length of a uniformly random seed, and also by the
entropy of the seed. While the importance of minimizing the former is obvious, the latter is also equally important,
since it is quite difficult to prepare a perfect random number generator for real cryptographic systems.

The main goal of this paper is to construct explicitly random hash functions for privacy amplification that require
smaller random seed lengths than in the previous literature, and still allow efficient implementations with complexity
O(n log n) for input length n. For achieving this goal, we use the concept of δ-almost dual universal2 hash function.
We also use a new method for constructing extractors by concatenating δ-almost dual universal2 hash functions
and conventional extractors.

In addition to minimizing the seed lengths, we also present general methods that enable the use of non-uniform
random seeds. These methods are general in the sense that they can be applied a wide class of extractors, including
dual universal2 hash function, as well as to conventional universal2 hash functions. Here the minimum entropy is
used as a measure that describes the randomness of the non-uniform random seed.
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The concept of the δ-almost dual universal2 hash function, as well as the extended leftover hashing lemma for
it were proposed in Refs. [11], [43]. In [43], we also gave the explicit inclusion relation with the (conventional)
universal2 hash function; e.g., if an arbitrary linear and surjective hash function is universal2 (with δ = 1), then it
is automatically δ-almost dual universal2. In this sense, the δ-almost dual universal2 function can be regarded as
an extension of the conventional universal2 function. Several classical and quantum security evaluations have been
obtained based on this new class of hash functions [16], [19]. In particular, finite-length security analysis has been
done with this class [23], [22].

Our proposed hash function:
Based on properties of conventional and dual universal2 hash functions, the corresponding security criteria, and

the corresponding leftover hashing lemmas. we propose a new method to construct random hash functions by
concatenating given random hash functions. While a method is already known for concatenating two (conventional)
δ-almost universal2 hash functions [37], we are here rather interested in other combinations including δ-almost
dual universal2 hash functions. Then by exploiting these results, we present secure hash functions that require less
random seed length h than previous methods, and can be implemented with complexity O(n log n). That is, we
explicitly construct a set of extractors whose seed lengths are min(m,n−m) asymptotically, where n is the input
length and m the output length. Recall that many of existing random hash functions, such as the one using the
(modified) Toeplitz matrix (see the attachment) and the ones proposed recently [41], require seed length n or 2m
asymptotically (see Table I). Here, we improve them by giving four types of hash functions explicitly. Namely,
we first present fF1,R suitable for m/n ≥ 1/2, and fF2,R suitable for m/n ≤ 1/2, both requiring seed length
n −m. Then by concatenating fF2,R and its dual f⊥F2,R, we construct fF3,R and fF4,R which require seed length
m asymptotically.

In order to demonstrate that hash functions fF1,R, . . . , fF4,R can indeed be implemented efficiently with
complexity O(n log n), we also give a set of explicit algorithms in the attachment. This algorithm set uses
multiplication algorithm for finite field F2k developed, e.g., in Refs. [35], [26], and works for parameter k satisfying
certain conditions related to Artin’s conjecture [36, Chap. 21]. We numerically check the existence of so many such
integers up to k ' 1050, and thus the algorithm can be applied to most practical cases.

TABLE I
COMPARISON OF RANDOM HASH FUNCTIONS

computational length of random seeds h & min entropy t
complexity when the seeds are uniformly random

ε const. ε = e−βn
γ

fF1,R, fF2,R O(n logn)
t = αn+O(1) t = αn+ 2βnγ +O(1)
h = (1− α)n h = (1− α)n

fF3,R O(n logn)
t = αn+O(1) t = αn+ 2βnγ +O(1)
h = αn+O(1) h = αn+ 4βnγ +O(1)

fF4,R O(n logn)
t = αn+O(1) t = αn+ 4βnγ +O(1)
h = αn+O(1) h = αn+ 4βnγ +O(1)

Modified
O(n logn)

t = αn+O(1) t = αn+ 2βnγ +O(1)
Toeplitz matrix h = n h = n
Trevisan’s

poly(n)
t = αn+O(1) t = αn+ 4βnγ +O(1)

extractor [42], [6] h = O(log3 n) h = O(n2γ log3 n)

TSSR paper [41] O(n logn)∗
t = αn+O(1) t = αn+ 4βnγ +O(1)
h = 2αn+O(1) h = 2αn+ 4βnγ +O(1)

ε-almost pairwise
poly(n)

t = αn+O(1) t = αn+ 4βnγ +O(1)
independent [28] h = 4αn+ o(n) h = 4αn+ 4βnγ + o(n)
Strong blender

poly(n)
t = αn+O(1) t = αn+ 2βnγ +O(1)

(classical) [8] h = n h = n

fF1,R, fF2,R, fF3,R, and fF4,R are hash functions proposed in this paper. Parameter n is the length of the input to the hash function, and ε
is the security level (L1 distinguishability) of the final key. Parameters h, t, α, γ are defined in order to compare the six schemes for a case
where the random seeds are uniformly random: t is the required minimum entropy for the input to a hash function, αn the output length,
h the required length of random seeds, and γ a constant in (0, 1]. We mainly choose γ > 1/2. fF3,R is a hash function for the classical
case. fF4,R is its quantum modification. ∗The paper [41] did not evaluate the computational complexity. However, when we employ our
construction of finite filed given in the attachment, we find that the computational complexity of the random hash function is O(n logn).
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Comparison with existing hash functions: As to comparisons with the existing methods: Trevisan [42] proposed
another efficient random hash function, whose performance was studied in the quantum case by [6]. The paper
[41], [28] also proposed other random hash functions. As is also summarized in Table I, the relations with our hash
function are as follows.

1) Our random hash functions, fF1,R, . . . , fF4,R and gn,l,m, and those of Ref. [41] have an efficient algorithm
with complexity O(n log n) for input length n. On the other hand, Ref. [8] only considers algorithms typically
with complexity O(n3) (c.f. the attachment), and Ref. [28] with poly(n). For Trevisan’s random extractor,
a pre-computation is required and the complexity of the actual calculation is only shown to be polynomial
in n. Although our random hash functions require a search for an integer k mentioned above, it should be
noted that k of a desired size up to k ' 1050 can be found in less than a second, and thus our random hash
functions practically have no pre-computation.

2) For the case where the uniform random seeds are uniformly random, we also compare the required length h
of random seeds, and the required minimum entropy t of the input to the hash function, as is summarized in
Table I. Here we denote the input and output lengths by n and m, their ratio by α := m/n, and the security
level (L1 distinguishability) of the final key by ε.
• When both α and ε are constant, all random hash functions have almost the same required minimum input

entropy t. While Trevisan’s random extractor [42], [6] has the minimum value for the required length h
of random seeds, the computational complexity is O(poly(n)) and also requires a pre-computation. Our
hash function fF1,R, fF2,R or fF3,R, fF4,R realizes the next minimum value dependently of α, and can
be implemented efficiently with O(n log n) and with virtually no pre-computation.

• Next, we consider the case where α is constant and ε is exponentially small with respect to n; that is,
we assume that ε behaves as e−βn

γ

with γ > 1
2 .1 In this case our random hash function fF1,R, fF2,R

or fF3,R, fF4,R achieves the minimum values of the required length h of random seeds and the required
minimum input entropy t at least in the first order n, dependently of α.

Conclusion: We have proposed new random hash functions fF1,R, . . . , fF4,R using a finite field with a large size,
which are designed based on the concepts of the δ-almost dual universal2 hash function. The proposed method
realizes the two advantages simultaneously. First, it requires the smallest length of random seeds. Second, there
exist efficient algorithms for them achieving the calculation complexity of the smallest order, namely O(n log n).
Note that no previously known methods, such as the one using the modified Toeplitz matrix, as well as those given
in Refs. [6], [41], [28], can realize these two at the same time.

Although there are now several security analyses done with the δ-almost dual universality2 [16], [19], a larger part
of existing security analyses are still based on the conventional version of universality2. The results obtained here
clarify advantages of the δ-almost dual universal2 hash function over the conventional one, and also demonstrate
that they can be easily constructed in practice. We believe that these facts suggest the importance of further security
analyses based on the δ-almost dual universality2, from theoretical and practical viewpoints.
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