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I. INTRODUCTION

Entanglement is one of the key features that distinguishes quantum information from classical
information. One particularly basic and important problem in the theory of entanglement is to
determine whether a given mixed state ρ is entangled or separable. Via standard techniques of
convex optimization, this problem is roughly equivalent to maximizing a linear function over the
set of separable states [1]. Indeed, it has close relations with a variety of problems, including
estimating channel capacities, analyzing two-prover proof systems, finding the ground-state energy
in the mean-field approximation, finding the least entangled pure state in a subspace, etc. as well
as problems not obviously related to quantum mechanics such as planted clique, the unique games
problem and small-set expansion [2].

However, there is no simple test for determining whether a state is entangled. Indeed not only
are tests such as the PPT (positive partial transpose) condition known to have arbitrarily large
error [3], but computational hardness results show that any test implementable in time polynomial
in the dimension must be highly inaccurate, given the plausible assumption that 3-SAT requires
exponential time [2, 4]. These limitations indicate that separability tests cannot be as efficient as,
say, a test for correlation, or a calculation of the largest eigenvalue of a matrix.

The main open question is whether algorithms exist that match these hardness results, or
whether further hardness results can be found. The two leading algorithmic frameworks are ε-nets
and semidefinite programming (SDP) hierarchies. There are two regimes in which these come close
to matching the known hardness results. Let n denote the dimension of the states we examine.
Informally speaking, the well-studied regimes are the constant-error regime, where there are both
algorithms and hardness results with time nΘ(logn) (although important caveats exist, discussed
below), and the 1/ poly(n) regime, where the algorithms and hardness results together suggest that
the complexity is exponential in n.

In this paper we consider the regime of much lower error. Specifically, if ε is the error allowed,
we will focus on the scaling of error with ε rather than n. In other settings, such as infinite
translationally invariant Hamiltonians, it is possible for the complexity to grow rapidly with 1/ε
even for fixed local dimension [5]. Another example closer to the current work is [6], which showed
that approximating quantum interactive proofs to high accuracy (specifically with the bits of
precision polynomial in the message dimension) corresponds to the complexity class EXP rather
than PSPACE. However, for separability testing we will show this is not the case.

Our main contribution is to describe a pair of classical algorithms for the separability problem.
In the high-accuracy limit both run in time exp(poly(n)) poly log(1/ε). One is based on quantifier
elimination [7] and is simple, but does not appear to yield new insights into the problem. The
second algorithm is based on an SDP hierarchy due to Doherty, Parrilo and Spedalieri (DPS) [8].
Like DPS, our algorithm runs in time poly(

(
n+k−1

k

)
) for what is called the kth “level” of the

hierarchy. As k is increased our algorithm, like that of DPS, becomes more accurate. Indeed, for
any fixed value of k our algorithm performs at least as well as that of DPS. However, unlike DPS,
our hierarchy always converges exactly in a finite number of steps, which we can upper bound
by exp(poly(n)). Taking into account numerical error yields an algorithm again running in time
exp(poly(n)) poly log(1/ε). Thus our algorithm is, for the first time, a single SDP hierarchy which
matches or improves upon the best known performance of previous algorithms at each scale of ε.
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The fact that our algorithm is a semidefinite program gives it further advantages. One very
useful property of semidefinite programs is duality. In our algoirthm, both the primal and dual
problems have useful interpretations in terms of quantum information. On the primal side, our al-
gorithm can be viewed as searching over symmetric mixed states over an extended system obtained
by adding copies of the individual subsystems. In this light, our convergence bounds can be viewed
as new monogamy relations: we show that if a state is symmetric under exchange of subsystems
and satisfies certain other conditions, then if there are enough copies of each subsystem, then none
of the subsystems can be entangled with each other. On the dual side, every feasible point of the
dual is an entanglement witness operator. Indeed, our algorithm yields a new class of entanglement
witnesses, as discussed in section III.D of the full paper. Duality is also useful in practice, since a
feasible solution to the dual can certify the correctness of the primal, and vice versa.

SDP hierarchies are also used for discrete optimization problems, such as integer programming.
In that case, it is known that the nth level of most SDP hierarchies provides the exact answer to
optimizations problems on n bits. By contrast, neither the DPS hierarchy nor the more general
Sum-of-Squares SDP hierarchy will converge exactly at any finite level for general objective func-
tions. Our result can be seen as a continuous analogue of the exact convergence achievable for
discrete optimization.

The main idea of our algorithm is that entanglement testing can be viewed as a convex opti-
mization problem, and thus the solution should obey the KKT (Karush-Kuhn-Tucker) conditions.
Thus we can WLOG add these as constraints. It was shown in [9] that for general polynomial
optimization problems, adding the KKT conditions yields an SDP hierarchy with finite conver-
gence. Moreover, the number of levels necessary for convergence is a function only of the number
of variables and the degrees of the objective and constraint polynomials. However, the proof of
convergence presented in [9] gives a very high bound on the number of levels (triply exponential in
n or worse). In contrast, we obtain a bound in the number of levels that is singly exponential in n.
We use tools from algebraic geometry (Bézout’s and Bertini’s theorem) to show that generically,
adding the KKT conditions reduces the feasible set of our optimization problem to isolated points.
Then, using tools from computational algebra (Gröbner bases), we show that low levels of the SDP
hierarchy can effectively search over this finite set. Although we use genericity in the analysis, our
algorithm works for all inputs. We emphasize that our proof employs tools from algebraic geometry
while our algorithm involves an elementary and simple modification of the DPS hierarchy.

While some of these techniques have been used to analyze SDP hierarchies in the past, they
have generally not been applied to the problems arising in quantum information. We hope that
they find future application to understanding entanglement witnesses, monogamy of entanglement
and related phenomena.

Our main contribution is an improved version of the DPS hierarchy which we describe in sec-
tion III. It is always at least as stringent as the DPS hierarchy, and in Theorem 1 we show that it
outperforms DPS by converging exactly at a finite level, depending on the input dimension.

II. CONNECTIONS TO OTHER PROBLEMS

Define Sep(n, k) := conv{|ψ1〉〈ψ1| ⊗ · · · ⊗ |ψk〉〈ψk| : |ψ1〉, . . . , |ψk〉 ∈ B(Cn)}, where conv(S)
denotes the convex hull of a set S (i.e. the set of all finite convex combinations of elements of
S) and B(V ) denotes the set of unit vectors in a vector space V . States in Sep(n, k) are called
separable, and those not in Sep(n, k) are entangled. Given a Hermitian matrix M , we define

hSep(n,k)(M) := max{Tr[Mρ] : ρ ∈ Sep(n, k)}. (1)

We will often abbreviate Sep := Sep(n, 2) where there is no ambiguity. More generally if K is a
convex set, we can define hK(x) := max{〈x, y〉 : y ∈ K}. A classic result in convex optimization [1]
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holds that approximating hK is roughly equivalent in difficulty to the weak membership problem
for K: namely, determining whether x ∈ K or whether dist(x,K) > ε given the promise that one
of these holds. Thus, in what follows we will treat entanglement testing (i.e. the weak membership
problem for Sep) as equivalent to the optimization problem in (1). For mathematical simplicity,
we make a further reduction from hSep to the optimization problem hProdSym(n,k), defined in terms

of the set ProdSym(n, k) := conv{(|ψ〉〈ψ|)⊗k : |ψ〉 ∈ B(Cn)}. In Corollary 14 of [2] (see specifically
explanation (2) there) it was proven that for any n2-dimensional M there exists M ′ with dimension
4n2 satisfying hProdSym(2n,2)(M

′) = 1
4hSep(n,2)(M). Thus an algorithm for hProdSym implies an

algorithm of similar complexity for hSep.

We will not fully survey the applications of separability testing, but briefly mention two connec-
tions. First, hSep(2n,k) is closely related to the complexity class QMAn(k) in which k unentangled
provers send n-qubit states to a verifier. If the verifier’s measurement is M (which might be
restricted, e.g. by being the result of a short quantum circuit) then the maximum acceptance
probability is precisely hSep(2n,k)(M). Thus the complexity of hSep is closely related to the com-
plexity of multiple-Merlin proof systems. See [10] for a classical analogue of these proof systems,
and a survey of recent open questions.

Second, hSep is closely related to the problems of estimating the 2→ 4 norm of a matrix, finding
the least-expanding small set in a graph and estimating the optimum value of a unique game [11].
These problems in turn relate to the approximation complexity of constraint satisfaction problems,
which are an extremely general class of discrete optimization problems. They are currently known
only to be of intermediate complexity (i.e. only subexponential-time algorithms are known), and
are the subject of intense research. One of leading approaches to these problems has been SDP
hierarchies, but here too it is generally unknown how well these hierarchies perform or which
features are important to their success.

III. ALGORITHM AND RESULTS

Our algorithm takes the form of a hierarchy of semidefinite programs. There are many ways
to formulate the hierarchy; here we present a formulation suited for comparison with DPS. The
level-r SDP of our hierarchy for hProdSym is

max
ρ

〈P(M ⊗ 1⊗r), ρ〉

such that ρ � 0, 〈P(Aα ⊗ Γij), ρ〉 = 0 ∀i, j, α.
(2)

In this program, the variable ρ is a matrix in R(2n)d+r×(2n)d+r
, representing a density matrix d+ r

parties. The symbol P indicates symmetrization under interchange of the parties. The main
difference from DPS is the set of added constraints 〈Aα ⊗ Γij , ρ〉 = 0, which are the moment
relaxations of the KKT conditions.

Our main result is the following convergence bound:

Theorem 1. For all input M , the hierarchy (2) converges to the optimum value of hProdSym(M)
at level r = O(dpoly(n)).

Corollary 1. For all inputs M , hProdSym(M) and hSep(M) can be approximated up to additive
error ε in time O(dpoly(n) poly log(1/ε)).
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