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I. SUMMARY

Transversal operations in quantum error correction, that is logical gates that are executed by applying a set of
gates in parallel, are the most straightforward form of fault-tolerant quantum logic. Naturally, characterizing the set
of logical gates that can be implemented transversally for a class of codes is of great importance to fault-tolerant
quantum architectures. In this work, we classify the set of logical gates that be realized by applying individual
diagonal gates transversally. Namely, we show that for qubit stabilizer subspace codes, the set of logical gates that

can be implemented by an operation of the form Z(θ)⊗n are restricted to have entries of the form eiπc/2
k

along their
diagonal, where c is an integer. We show that these results imply that logical gates implemented in this manner must
belong to the Clifford hierarchy for all stabilizer codes and moreover the single and multi-qubit gates are restricted
to be elements of the same level of the Clifford hierarchy.

II. INTRODUCTION AND BACKGROUND

Quantum error correction and fault-tolerance are vital to the implementation of a coherent quantum computing
device. The former addresses the ability to detect and correct given sets of error defined by the characteristics of the
quantum error correcting code [1–4] while the latter is concerned with limiting the propagation of physical errors that
occur in order to remain correctable [5–9]. Logical gates are applied for a given code by applying a sequence of gates on
the qubits encoding the quantum information in the quantum error correcting code. The most natural form of fault-
tolerant quantum gate is a transversal gate, that is a gate that is applied in parallel to individual qubits in a logically
encoded codeblock, or individual pairs of qubits in the case of a logical gate between codeblocks. As such, developing
quantum error correcting codes with transversal logical gates is of great interest to building a fault-tolerant quantum
architecture. Unfortunately, it has been shown that there exists no quantum error correcting code that exhibits a
set of universal logical gates that can be implemented transversally [10, 11]. In order to sidestep this restriction,
techniques such as magic state distillation [12], gauge fixing [13, 14], fault-tolerant code concatenation [15], and code
conversion [16] have been developed to implement a universal set of fault-tolerant quantum gates, each of which exploit
the transversal nature of sets of logical gates in specifically chosen codes. Therefore, having an understanding of the
set of logical gates that can be implemented transversally would profoundly impact multiple avenues for fault-tolerant
quantum computing architectures. Finally, there has been a recent push in the quantum gate synthesis community to
consider new sets of universal single-qubit gates for the purposes of gate decomposition of an arbitrary single-qubit
unitary. Namely, advantages over the traditional {H,T} basis, where H is the Hadamard gate and T is the π/8 gate

(T = diag(1, eiπ/4)), have been found in the form of the {H,V } basis, where V = diag(1 − 2i, 1 + 2i)/
√

5, where
the overall number of non-Clifford gates is reduced for decompositions in the latter basis [17]. Therefore, if it were
possible to find codes that could implement the V gate transversally, this could point to more efficient fault-tolerant
implementations of such a gate decomposition, as outlined by the techniques above.

Zeng et al. showed that any single-qubit logical gate that is implemented transversally for a qubit stabilizer code
must be equivalent up to local Clifford gate operations to a transversal application of diagonal gates [11]. As stated
below, this work fully classifies this set of gates and as such classifies all transversal operations for single-qubit logical
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operations up to local Clifford equivalences. Finally, it should be noted that in a parallel works transversal gates were
established to belong to the Clifford hierarchy [18, 19]. Our result differs from their result primarily by the following:
we establish the allowable underlying physical gates that can be used in the application of a nontrivial transversal
logical gate and additionally characterize the set of diagonal two-qubit transversal gates that can be implemented
between two codeblocks encoded in the same code. Importantly, we show that the diagonal two-qubit transversal
gates must belong to the the same level of the Clifford hierarchy as those realizable for a single codeblock for a given
code.

III. MAIN RESULT

Before arriving at the main result of the paper, we first introduce some definitions. Let S = 〈Gi〉mi=1 be a stabilizer
group generated by a set of m Pauli operators 〈Gi〉mi=1 on n qubits and let CS = {|ψ〉 | g|ψ〉 = |ψ〉 ∀ g ∈ S} be
the stabilizer code corresponding to the “+1” eigenspace of all of the stabilizers in S. Such a stabilizer code will
have (n−m) logical qubits, and a corresponding set of logical Pauli XL,i and ZL,i operators, which are composed of a
tensor product of Pauli operators [20, 21]. A CSS stabilizer code is a stabilizer code whose generators can be expressed
in two distinct sets, those containing only Pauli X operators and those containing only Pauli Z operators [22, 23].

We define a strongly transversal gate as a gate of the form Z(θ)⊗n, that is an identical Z basis rotation for each
of the individual qubits of the code, where Z(θ) = diag(1, eiπθ). For many quantum codes, a logical gate can be
realized by applying such strongly transversal gates, such as the logical phase gate for the 7-qubit Steane code or the
logical T gate for the 15-qubit Reed-Muller code, both of which are CSS codes. Our first main result classifies the
set of strongly transversal gates that can be implemented for nontrivial CSS codes, where nontrivial is defined to be
a logical codespace of at least a single logical qubit and a code distance of at least 2 (can detect an arbitrary single
qubit error).

Theorem 1. A nontrivial CSS code can only have strongly transversal Z(θ) rotations which are of the form Z(a/2k).

It is worth pointing out that the Reed-Muller family of quantum error correcting codes exhibit logical gates of
the form Z(a/2k)⊗n. The theorem is proven by considering the expansion of the logical states as a sum of states in
the computational basis and imposing modular arithmetic restrictions on the weight of the elements of the stabilizer
group (in terms of the binary representation of the X components of the Paulis) in order for such a gate to be a
logical gate. These restrictions only allow very selective rotations in order for all of the conditions on the weights of
the stabilizer group elements to be satisfied.

In addition, in this work we show a further result on the classification of diagonal rotations in the Clifford hierarchy.

The Clifford hierarchy is defined recursively, beginning with the first level C(1)n = Pn being the n-qubit Pauli operators,

and the elements of subsequent levels being defined as follows: Ckn = {U ∈ U(2n) | UPU† ∈ C(k−1)n ∀P ∈ Pn}, where
U(2n) is the set of unitaries on n qubits.

Proposition 2. Let A = Z(θ) be a diagonal single-qubit operator. If θ = c/2k, for any integer k ≥ 0 where θ is in

its most reduced form, then A ∈ C(k+1)
1 . Otherwise, A is not in the Clifford hierarchy, that is A /∈ C(k)

1 for all k.

Therefore, the logical gates that can be implemented in a strongly transversal manner are restricted to be composed
of individual physical gates belonging to the Clifford hierarchy and strengthens the strong relationship between the
Clifford hierarchy and fault-tolerance. Moreover, since the induced phase on the logical state must be a multiple of
the phases of the individual qubits, the resulting logical gate must also belong to the Clifford hierarchy.

In a similar manner to the proof of the gate restrictions for CSS codes, we then extend our proof to incorporate all
stabilizer codes, making extensive use of the binary representation of n-qubit Pauli operators as 2n-bit strings. Our
main result of the paper is:

Proposition 3. A nontrivial qubit stabilizer codes can only have strongly transversal Z(θ) rotations which are of the
form Z(a/2k).

While strongly transversal gates are commonly used for the purposed of applying a logical gate, one could envision
implementing a logical gate by applying individual rotations of different strength, that is rotations of the form ZL(θ) =
Z(θ1) ⊗ Z(θ2) ⊗ . . . ⊗ Z(θn). We show that such logical gates are restricted by the same set of conditions in two
steps. First, in order for such a gate to be a nontrivial (non-identity) gate the rotations must be rational (shown
in the Appendix of the main document). Then, having found a common denominator, the above gate is realized by
applying the same basic rotation to all physical qubits, where the rotation is applied a different number of times to
each individual qubit. Finally we show by finding an appropriate distance 2 code, we can recover the proof for the case
of the strongly transversal gates and that the individual rotations on the physical qubits must be of the form Z(a/2k).
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Finally, we conclude by considering multi-qubit transversal gates, and the imposed restrictions on the set of two-
qubit diagonal gates for two blocks of the same quantum error correcting code. In addition to the set of restrictions on
the weight of the binary string expansion of the stabilizer group elements in the case of the single-qubit logical gate,
there is a further restriction on the difference of the phase angles composing the multi-qubit diagonal gate. This extra
restriction imposes that if in the single qubit case the code was chosen to have the ability to implement transversal

diagonal gates with entries of the form eiπ/2
k

, then in the multi-qubit case one of these phases would have to be of the

form eiπ/2
k−1

. The implication of this restriction is that the two-qubit logical gate that can be implemented in such a
manner must reside at the same level of the Clifford as the single qubit logical gate for the given code. A compressed
statement of the Theorem is as follows:

Theorem 4. Given a CSS code that can implement the logical gate ZL(1/2k) by applying a transversal Z(1/2k)⊗n

on the underlying physical qubits yet cannot implement the gate ZL(1/2k+1) due to code constraints. Then, the set
of two-qubit diagonal gates U =

∑
j e
iπθj that can implement a logical two-qubit operation by applying such gates

transversally (U⊗n) will be restricted to be contained at the same level in the Clifford hierarchy as the single-qubit

logical gate, that is ZL(1/2k) ∈ C(k+1)
1 and U⊗n ∈ C(k+1)

2 .

This result can be further generalized as in the single-qubit case to general stabilizer codes and can account for
differing rotations on the pair of qubits. The result implies that given a stabilizer code, there will be a level in the
Clifford hierarchy imposed by the code that will contain all possible nontrivial diagonal transversal logical gates,
regardless of whether they are single-qubit or multi-qubit rotations.

As outlined in the Introduction & Background, the result of these restrictions are far reaching. They imply that
for universal fault-tolerant techniques such as gauge fixing, code concatenation, or conversion between two sets of
codes with differing transversal gate sets, the only non-Clifford gates that can be implemented transversally already
all belong to a known family of codes, the Reed-Muller code family. While such codes may not be optimal in terms
of the number of overall qubits and the search for other codes with similar properties could be fruitful, considering a
completely different set of operations for universal logic would not be possible.

Further, for the purposes of magic state distillation, which relies on transversal logic in order to arrive at a decoding
sequence for the purposes of distillation for certain (but not all) schemes, this result implies that the set of magic
states that can be distilled via traditional distillation methods are limited to be of a particular form imposed by these
conditions.

Finally, in the case of unitary gate decomposition for circuit synthesis, more efficient techniques based of a decom-
position in terms of the {H,V } basis may suffer from having to use approximative techniques in order to implement
the V gates fault-tolerantly. Namely, since the V gate does not belong to the Clifford hierarchy it will not be im-
plementable in a transversal way, and moreover developing a state distillation scheme to implement V exactly would
not be possible via the traditional distillation methods. Therefore, to implement it logically, an appriximative state
distillation technique would have to be used [24].
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