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Abstract

Quantum particles with spin are the most elementary gyroscopes existing in nature. But what happens
when two such gyroscopes are used by two distant observers to find out their relative orientation in
space? Here we show that a pair of gyroscopes in an EPR entangled state gives little clue about the
relative orientation, but when two or more identical pairs are available, suddenly the error drops with the
size of the system, at a rate that beats the best classical scaling already for small number of copies. This
activation phenomenon indicates the presence of a latent resource hidden into EPR correlations, which
can be unlocked and turned into advantage when multiple copies are available.

Information about reference frames is carried by physical systems, such as clocks and gyroscopes for
time and spatial orientation. The field of quantum reference frames [1] aims at investigating how the rules
of quantum mechanics affect the ability of systems to carry reference frame information [2, 3, 4, 5, 6, 7, 8],
and how they can be harnessed to achieve novel information-theoretic protocols [9, 10, 11, 12, 13, 14, 15].
Here we point out a new, rather counterintuitive phenomenon, which arises when entangled states are used
to encode three orthogonal directions in space. In a nutshell: a quantum gyroscope can indicate three spatial
directions with a precision that does not scale with the size of the system, but when more identical copies
are used, one can achieve vanishing error, with a scaling that becomes highly non-classical already for small
number of copies. This phenomenon is best described in a bipartite scenario: Suppose that initially Alice
and Bob are at a ground station, with their axes aligned (nA

i ≡ nB
i ≡ ni for i = x, y, z). Then, they travel

to two distant satellite stations and during the journey their local reference frames undergo two unknown
rotations gA and gB , respectively. At this point, their task is to realign the axes, performing two rotations
hA and hB such that hAgA = hBgB . We assume that only classical communication is possible between the
two stations, e. g. via radio signals. Hence, Alice and Bob can only rely on the correlations between their
gyroscopes: for example, if the gyroscopes are aligned with the axes at the ground station, Alice and Bob
can try to estimate their orientation and to align themselves with it. In general, a perfect alignment will not
be possible, due to the finite size of the gyroscopes. One way to quantify the error is to consider the square
distance between Alice’s and Bob’s axes after the realignment, averaged over the three axes [2, 4, 5, 6, 9]

e(hA, hB, gA, gB) =
1

3

∑
i=x,y,z

‖hAgAni − hBgBni‖2 . (1)

In general, an alignment protocol will consist of local operations (LO), performed at the satellite stations,
coordinated by classical communication (CC) between the two stations. Since eventually the protocol out-
puts a classical description of the two rotations hA and hB , one can describe it by a LOCC measurement.
The goal of the measurement is to minimize the expected value of the error, in the worst case scenario over
all possible rotations gA and gB .
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We now exhibit a family of quantum states where the alignment error remains constant with the size
of the system. Alice’s (Bob’s) quantum gyroscope is a composite system, consisting of a spin-j particle,
denoted by A1 (B1), and of a (2j + 1)-dimensional, rotationally invariant degree of freedom, denoted by
A2 (B2). The latter can be realized e. g. by the charge or current states of a solid state quantum device, or
can be simulated by a virtual subsystem of a set of spin-1/2 particles [9]. For the joint state of Alice’s and
Bob’s gyroscopes, we choose

ρAB = |Sj〉〈Sj |A1B1 ⊗ |Φ+
j 〉〈Φ

+
j |A2B2 , (2)

where |Sj〉 is the spin-j singlet [16] and |Φ+
j 〉 is the standard maximally entangled state in dimension 2j+1.

Strictly speaking, only the systems A1 and B1 act as “gyroscopes” (carriers of directional information),
while the role of systems A2 and B2 is to allow Alice and Bob to simulate a global measurement on A1B1.

In order to evaluate the precision of alignment, we convert the minimization of the error into a problem
of quantum estimation in the presence of shared reference frames. Using this technique, we show that i) the
best alignment protocol using the state ρAB has alignment error e = 4/3, independently of j and ii) using
the state ρAB ⊗ ρAB the error can be reduced to the Heisenberg limit (HL) 1/j2 with probability p larger
than 43.9%, and to the standard quantum limit (SQL) 1/j with probability 1 − p. For large j, this means
that the state (2) has a potential to give highly precise information about three directions in space, but this
potential cannot be detected for a single copy: it shows up only when n ≥ 2 copies are available.

The activation phenomenon highlighted here is not an artifact of the specific error function used in our
calculation. For example it can be observed also for the variance of the three Euler angles: for a single copy,
if the sum of the three variances vanished with j, then also the average of the error (1) would have to vanish,
in contradiction with result i). On the other hand, the fact that for two copies the error (1) vanishes implies
that also the variances must vanish. The same arguments can be used for every function of the Euler angles
that is sufficiently regular (basically, every function that admits a Taylor expansion up to the third order).

Going from one to two copies enhanced the precision from constant scaling to the SQL and, with good
chance of success, to the HL. The probability of reaching the HL can be further amplified by repetition of
the protocol, which allows one to attain HL precision with probability pn > 1− (0.551)n using 2n copies.
However, one can do even better: taking advantage of joint measurements, the HL can be achieved with
probability 1 using only four copies. For three copies, the HL cannot be achieved deterministically, but,
interestingly enough, one can still obtain the quasi-Heisenberg scaling e = ln(6j)/(8j2) +O(1/j2).

We now discuss briefly some consequences and applications of our results:
Secret sharing of a reference frame. Our result suggests a way to distribute the ability to align Cartesian

frames over different parties, in a way that is akin to secret sharing [18, 19]. Imagine that, in order to
accomplish a desired task, the two satellite stations A and B must have their reference frames aligned with
high precision. At the two stations there two groups of parties, with each pair of parties (Ai, Bi) possessing
two systems in the state ρAB . Now, our result guarantees that a single pair alone cannot achieve the desired
task: at least two parties have to cooperate in order to reduce the error down to zero. Moreover, if the task
requires the error to be of order 1/j2 (instead of 1/j or log j/j2), then at least four parties at each station
have to cooperate. Regarding the problem of secret sharing of reference frames, our protocol improves over
the state of the art [14], allowing one to achieve the Heisenberg limit. Indeed, the precision of the alignment
in Ref. [14] was bound to the SQL by the fact that the protocol used n spin-1/2 particles in a separable state.

Quantum metrology with spin-j singlets. Although we presented our results in a bipartite communication
scenario, it is immediate to translate them into the conventional single-party scenario of quantum metrology.
In this translation, the problem is to estimate an unknown rotation g from n copies of the rotated spin-
j singlet |Sj,g〉, a situation that arises e.g. in the measurement of an unknown magnetic field using one
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spin-j particle as a probe and another spin-j particle as an ancilla. Another example is the measurement
of the magnetic field gradient between two locations probed by the two entangled spins [20, 21]. In both
examples, the fact that quantum-enhanced precision can be achieved using n ≥ 3 spin-j singlets is good
news, since these states are much easier to produce than the optimal quantum states for the estimation of
rotations [6, 7, 8, 17]. In addition, since three copies are sufficient to beat the classical scaling, an estimation
strategy using spin-j singlets is intrinsically robust under losses.

Non-achievability of the Quantum Cramér-Rao bound in the finite-copy regime. A popular approach to
quantum metrology is via the quantum Cramér-Rao bound (CRB), which lower bounds the variance with
the inverse of the quantum Fisher information [23, 24, 25]. The bound is known to be achievable in the
asymptotic limit where a large number of identical copies are available [26]. Practically, however, the CRB
is often invoked to discuss quantum advantages in the finite-copy regime. Our result provides a strong
caveat on this sort of extrapolations: for a single copy of a spin-j singlet, it implies that the variance of
the three Euler angles cannot vanish with j, despite the fact that that Fisher information grows like j2. The
asymptotic achievability of the CRB is retrieved in our approach using n � 1 identical copies, with higher
order corrections vanishing as n3/2, uniformly in j. In other words, achieving the CRB requires n to be
large, but not necessarily large compared to j.

Precision-enhancement from correlations in invariant degrees of freedom. In addition to activation, our
results highlight another, purely quantum feature. This feature shows up already at the single-copy level:
here, we know that Alice and Bob can align their axes with error e = 4/3—if they use, in addition to the
spin-j singlet, a maximally entangled state between two rotationally invariant degrees of freedom. But is
this resource necessary? Classically, sharing correlations between two invariant degrees of freedom is of
no help for aligning directions in space. Instead, in the quantum world these correlations can make the
difference: for example, for j = 1/2 we find that without entanglement between the invariant qubits the
error has the larger value e = 16/9, strictly larger than 4/3. In other words, a state that is useless for the
alignment of reference frames turns out to be very useful when used in combination with other states.

In conclusion, a pair of quantum gyroscopes can be correlated in a way that makes the alignment pre-
cision independent of their size as long as a single copy is available. When two or more such pairs, the are
used jointly one obtains a vanishing error. Specifically, for one copy of a spin-j singlet the error is inde-
pendent of j, while for two copies the error reaches the Heisenberg scaling 1/j2 with probability p ≥ 43%
and the SQL scaling 1/j otherwise. Sub shot-noise scaling can be achieved with unit probability for every
number of copies n > 2. In particular, four copies suffices to achieve the Heisenberg scaling. These results
have several applications, e.g. to secret sharing of spatial directions and quantum metrology in the finite-
copy regime. In addition, they shed light on the non-trivial way in which quantum resources compose in the
resource theory of reference frames [28, 29, 30, 31, 32].
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